Mathematical model and specific growth rate of Acidithiobacillus ferrooxidans in a liquid culture under laboratory conditions

Main Article Content

Daladier Castillo Cotrina
Roberto Castellanos Cabrera
Anacelly Valera López
Javier Lozano Marreros

Abstract

In the bioleaching of low-grade ores to recover metals such as copper, silver, zinc or uranium, Acidithiobacillus ferrooxidans is widely studied and used. Its biomass can be inoculated on minerals to improve bioleaching; however, it is dependent on the environmental conditions in which it develops. In this sense, determining a mathematical model that represents the whole process of obtaining biomass, as well as its specific growth rate, under certain conditions, is very important, since it can be used to optimize, predict, compare and monitor the bioleaching process. The objective of this research was to establish the mathematical model and the specific growth rate of Acidithiobacillus ferrooxidans in a liquid culture under certain laboratory conditions. The bacteria were consecutively reactivated twice in 9K culture medium and subjected to adaptation in liquid culture with OK medium with arsenopyrite 1 % (w/v) and incubated at 25 °C with aeration. A single treatment was had with two replicates, each using a glass flask bioreactor containing 630 ml of 0K medium, A. ferrooxidans (70 ml) and Arsenopyrite 8 % (w/v) and incubated at 25° C with aeration for 288 hours. Cell microscopic counts were performed every 48 hours. The data obtained were plotted as decimal logarithm of cell concentration versus time to establish the curve of lines and points, which was used to determine the curve and polynomial equation as a mathematical model with the help of Matlab software. Similarly, it was used to determine the maximum point of the logarithmic phase of the growth curve and the specific growth rate. The mathematical model representing the biomass production was a fourth degree polynomial equation with a maximum biomass production of A. ferrooxidans of 1.13 x 108 cells/ml and a specific growth rate of 0.03 h-1.

Downloads

Download data is not yet available.

Article Details

How to Cite
Castillo Cotrina , D. ., Castellanos Cabrera, R. ., Valera López, A. ., & Lozano Marreros, J. . (2022). Mathematical model and specific growth rate of Acidithiobacillus ferrooxidans in a liquid culture under laboratory conditions. Revista Ciencias Biológicas Y Ambientales, 1(1), 54–61. https://doi.org/10.33326/29585309.2022.1.1588
Section
Artículos

References

Agotangelo, E. (2007). Estudio del comportamiento cinético de microrganismos de interés en seguridad alimentaria con modelos matemáticos (tesis doctoral). Universidad Autónoma de Barcelona, España.

Ayala, J., & Pardo, R. (1995). Optimización por Diseños Experimentales con Aplicaciones en Ingeniería. Lima: CONCYTEC.

Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiology reviews, 20(3-4), 591-604.

Casas, J., Lienqueo, M., Cubillos, F., & Herrera, L. (2000). Modelación cinética de la precipitación de hierro como jarosita en soluciones lixiviantes utilizando la bacteria Thiobacillus ferrooxidans. Universidad de Santiago. Chile.

Castillo, D., Castellanos, R., & Tirado, E. (2021). Acción biooxidativa de cultivos microbianos biolixiviantes sobre la arsenopirita. Ciencia & Desarrollo, 20, 57-69. https://doi.org/10.33326/26176033.2021.1.1108

Castillo, D., Clavijo, D., Chipana, V., Centeno, J., Eyzaguirre, P., Delgado, S., & De la Vega, L. (2016). Evolución del crecimiento en consorcios microbianos nativos en la mina de Toquepala de Tacna-Perú. XIII Jornadas Mineras de tratamiento de minerales. Mendoza. Argentina.

Cuba, M., & Pastrana, G. (2018). Recuperación de oro a partir de un mineral refractario de pirrotita por biooxidación en la biominería aurífera Calpa- Arequipa (tesis de pregrado). Universidad Nacional del Centro del Sur. Huancayo.

Delgado, S., & Castillo, D. (2019). Influencia de la Temperatura en el crecimiento de un consorcio microbiano y su capacidad biooxidativa sobre el hierro de la calcopirita. Ecología Aplicada, 18 (1). http://dx.doi.org/10.21704/rea.v18i1.1310

Eyzaguirre, P., & Castillo, D. (2019). Biolixiviación indicativa del sulfato de cobre por crecimiento microbiano ante el drenaje minero. Revista de Investigaciones Altoandinas, 21(1): 49-56. http://dx.doi.org/10.18271/ria.2019.444

Forshaug, J., Luong, H., & Brown, E. (1984). Growth Kinetics of Thiobacillus ferrooxidans Isolated from Arsenic Mine Drainage. Applied and Environmental Microbiology, 48 (1), 48-55.

Garre, A., Egea, J., & Fernández, P. (2016). Modelos matemáticos para la descripción del crecimiento de microorganismos patógenos en alimentos. Anuario de Jóvenes investigadores, 9, 160-163

Madigan, M., Martinko, J., & Parker, J. (2000). Brock biología de los microorganismos. Editorial Prentice Hall.

Pavez, B. (2011). Cuantificación de la expresión del gen omp-40 y de los genes que conforman el operón gal, vinculado a cambios cinéticos de Acidithiobacillus ferrooxidans en respuesta adaptativa a mineral sulfurado de cobre (tesis de pregrado).

Rawlings, D., & Barrie, D. (2007). Biomining. Springer.

Rohr, M., Lavalle, L., Pettinari, G., Giaveno, A., & Donati, E. (2005). Lixiviación de un mineral sulfurado utilizando cepas acidófilas nativas. Universidad Nacional del Comague.

Zepeda, V. (2017). Biolixiviación de minerales sulfurados de cobre de baja ley (tesis doctoral). Universidad Complutense de Madrid. España.

Most read articles by the same author(s)