GENERALIZACIÓN DE LA INTEGRAL DE ORDEN ORDINARIO A ORDEN FRACCIONARIO
Main Article Content
Abstract
El propósito de este artículo es demostrar la generalización de la integral de orden entero de Newton - Leibniz al operador de integración de orden fraccionario de Riemann-Liouville sobre un intervalo cerrado. En tal sentido, se presenta la teoría básica de las diversas aproximaciones de la integral de orden ordinario, el uso de la función gamma y la fórmula de Cauchy; los cuales sirven de base para llegar a la definición del operador de integración fraccionario, a partir de la nésima integral iterado ordinario de una función definida recursivamente. Luego, se hace las demostraciones y ejemplificaciones de la linealidad del operador integral fraccionario, y las proposiciones de este operador fraccionario aplicado a la función potencia y logarítmica.