Análisis multitemporal de la laguna Suches y del vigor de la vegetación del bofedal de Huaytire, Tacna

Contenido principal del artículo

José Chambe Bahamontes
https://orcid.org/0000-0002-4623-2419
Dariella Sharyley Quintana Calizaya
https://orcid.org/0000-0001-7293-0117
Marianela Sanga Franco

Resumen

La laguna Suches y el bofedal de Huaytire, ubicados en la provincia de Candarave del departamento de Tacna, son ecosistemas importantes que brindan diversos servicios ecosistémicos. En esta investigación, se determinó el cambio del área del espejo de agua de la laguna Suches y el cambio de los valores de NDVI del bofedal de Huaytire entre los años 1975 a 2020, mediante el análisis de imágenes satelitales obtenidas del Servicio Geológico de los Estados Unidos – USGS (Landsat 2, Landsat 5, Landsat 7 y Landsat 8). Se calculó el Índice Normalizado Diferencial de Vegetación (NDVI) y el Índice Diferencial de Agua Normalizado (NDWI). Los resultados evidencian una disminución notable del área de la laguna Suches y del vigor de la vegetación, este último indicando una disminución de la cobertura del bofedal de Huaytire. Aunque, no fue posible establecer una relación causal con los factores que estarían ocasionando tal disminución, la evidencia científica revisada sugiere que el cambio climático, la derivación y extracción de agua superficial y subterránea; así como, el pastoreo de ganado camélido, serían las causantes de los resultados encontrados.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Chambe Bahamontes, J. F. ., Quintana Calizaya, D. . S. ., & Sanga Franco, M. S. (2021). Análisis multitemporal de la laguna Suches y del vigor de la vegetación del bofedal de Huaytire, Tacna. Ciencia & Desarrollo, 20(1), 27–39. https://doi.org/10.33326/26176033.2021.1.1106
Sección
Artículo original
Biografía del autor/a

José Chambe Bahamontes, Universidad Nacional Jorge Basadre Grohmann, Facultad de Ciencias Agropecuarias, Semillero de investigación de Tecnología Ambiental. Tacna, Perú.

Egresado de la Carrera Profesional de Ingeniería Ambiental de la Universidad Nacional Jorge Basadre Grohmann. Comprometido con la investigación y el desarrollo sostenible. Experiencia en apoyo en la elaboración de Instrumentos de Gestión Ambiental. Asistente técnico de la Sub Gerencia de Estudios del Gobierno Regional de Tacna.

Dariella Sharyley Quintana Calizaya, Universidad Nacional Jorge Basadre Grohmann, Facultad de Ciencias Agropecuarias, Semillero de investigación de Tecnología Ambiental, Tacna,Perú.

Egresada de la Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional Jorge Basadre Grohmann. Experiencia en Implementación de un sistema integrado de residuos sólidos municipales en la Sub Gerencia de Gestión Ambiental de la Municipalidad Distrital de Ciudad Nueva. Interés en investigación de soluciones ambientales.

Marianela Sanga Franco, Universidad Nacional Jorge Basadre Grohmann, Facultad de Ciencias Agropecuarias, Semillero de investigación de Tecnología Ambiental. Tacna, Perú.

Egresada de la Escuela Profesional de Ingeniería Ambiental de la Universidad Nacional Jorge Basadre Grohmann-Tacna Prácticas pre-profesional realizadas en la Unidad de Gestión de Conservación y Fiscalización Ambiental de la Municipalidad Provincial de Tacna Actualmente laboró en la Gerencia de Desarrollo Económico, Social y Gestión Ambiental de la Municipalidad Distrital de Estique.

Citas

Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A., & Winder, M. (2009). Lakes as sentinels of climate change. Limnology and Oceanography, 54(6 PART 2), 2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283 DOI: https://doi.org/10.4319/lo.2009.54.6_part_2.2283

Alvarado, C., Leandro, A., Mayor, N., & Marcos, D. S. (2019). Comparison of Vegetation Indexes with Landsat images using cloud computing : Pampa de Majes-Siguas area, Arequipa-Peru. Revista de Investigación de Física, 22(1), 27–34. DOI: https://doi.org/10.15381/rif.v22i1.20280

Ames, F., Quispe, H., Zuñiga, D., Segovia, M., & Kessler, M. (2019). Bosques de Polylepis: Biodiversidad en la Región Central del Perú. https://repositorio.continental.edu.pe/handle/20.500.12394/5922

Anthelme, F., Meneses, I., & Dangles, O. (2018). Métodos para estudiar el efecto del cambio climático sobre los bofedales y sus servicios ambientales inherentes. Ecología en Bolivia, 49(3). http://bibliotecadigital.ciren.cl/handle/123456789/26589

Autoridad Nacional del Agua. (2010). Estudio evaluación de recursos hídricos cuencas de los rios Locumba y Sama: Vol. I.

Baniya, B., Tang, Q., Huang, Z., Sun, S., & Techato, K. anan. (2018). Spatial and temporal variation of NDVI in response to climate change and the implication for carbon dynamics in Nepal. Forests, 9, 1–18. https://doi.org/10.3390/f9060329 DOI: https://doi.org/10.3390/f9060329

Bonnesoeur, V., Locatelli, B., Guariguata, M. R., Ochoa-Tocachi, B. F., Vanacker, V., Mao, Z., Stokes, A., & Mathez-Stiefel, S. L. (2019). Impacts of forests and forestation on hydrological services in the Andes: A systematic review. Forest Ecology and Management, 433(December 2018), 569–584. https://doi.org/10.1016/j.foreco.2018.11.033 DOI: https://doi.org/10.1016/j.foreco.2018.11.033

Castañeda, E. (2014). Análisis Multitemporal Del Cuerpo De Agua De La Laguna El Sonso Mediante Imágenes Satelitales Landsat. Universidad Militar Nueva Granda (Bogotá), 20.

Dangles, O., Rabatel, A., Kraemer, M., Zeballos, G., Soruco, A., Jacobsen, D., & Anthelme, F. (2017). Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS ONE, 12(5), 1–22. https://doi.org/10.1371/journal.pone.0175814 DOI: https://doi.org/10.1371/journal.pone.0175814

Domic, A., Capriles, J., Escobar-Torrez, K., Santoro, C., & Maldonado, A. (2018). Two thousand years of land-use and vegetation evolution in the Andean Highlands of Northern Chile inferred from pollen and charcoal analyses. Quaternary, 1(3), 32. https://doi.org/10.3390/quat1030032 DOI: https://doi.org/10.3390/quat1030032

Duwig, C., Archundia, D., Lehembre, F., Spadini, L., Morel, M. C., Uzu, G., Chincheros, J., Cortez, R., & Martins, J. M. F. (2014). Impacts of anthropogenic activities on the contamination of a sub watershed of Lake Titicaca. Are antibiotics a concern in the Bolivian Altiplano? Procedia Earth and Planetary Science, 10, 370–375. https://doi.org/10.1016/j.proeps.2014.08.062 DOI: https://doi.org/10.1016/j.proeps.2014.08.062

Elmore, A. J., Manning, S. J., Mustard, J. F., & Craine, J. M. (2006). Decline in alkali meadow vegetation cover in California: The effects of groundwater extraction and drought. Journal of Applied Ecology, 43(4), 770–779. https://doi.org/10.1111/j.1365-2664.2006.01197.x DOI: https://doi.org/10.1111/j.1365-2664.2006.01197.x

Elo, A.-R., Huttula, T., Peltonen, A., & Virta, J. (1998). The effects of climate change on the temperature conditions of lakes. Boreal Environment Research, 3, 137–150.

Farías, M., & Lagos, M. (2015). Estimación de vegetación, humedad superficial y cuerpos de agua utilizando percepción remota: Salar Brinkerhoff, desierto de Atacama, Chile. ResearchGate, october. https://doi.org/10.13140/RG.2.1.1390.1526

Flórez, G., Rincon, A., & Santiago, P. (2017). Análisis multitemporal de las coberturas vegetales en el área de influencia de las minas de oro ubicadas en la parte alta del sector de Maltería en Manizales, Colombia. DYNA, 84(201), 95-101 https://doi.org/10.15446/dyna.v84n201.55759 DOI: https://doi.org/10.15446/dyna.v84n201.55759

Franco León, P., & Sulca Quispe, L. (2019). Evaluación Socio - Ambiental del Bofedal Huaytire de la Provincia de Candarave - Tacna. Ciencia & Desarrollo, 12, 93–98. https://doi.org/10.33326/26176033.2008.12.259 DOI: https://doi.org/10.33326/26176033.2008.12.259

Galindo, A., & Anaya, M. (2018). Hidroquímica y su variabilidad espacio temporal en un bofedal altoandino de la Reserva Paisajística Nor Yauyos Cochas, Perú. Idesia, 36, (4). https://doi.org/10.4067/s0718-34292018005002603 DOI: https://doi.org/10.4067/S0718-34292018005002603

Garcia, E., & Otto, M. (2015). Caracterización ecohidrológica de humedales alto andinos usando imágenes de satélite multitemporales en la cabecera de cuenca del río Santa, Ancash, Perú. Ecología Aplicada, 14(1–2), 115. https://doi.org/10.21704/rea.v14i1-2.88 DOI: https://doi.org/10.21704/rea.v14i1-2.88

Gobierno Regional de Tacna. (2016). Memoria Descriptiva del mapa de uso actual de tierras de la Región de Tacna.

Gokdemir, C., Rubin, Y., Li, X., Li, Y., & Xu, H. (2019). Vulnerability analysis method of vegetation due to groundwater table drawdown induced by tunnel drainage. Advances in Water Resources, 133(March), 103406. https://doi.org/10.1016/j.advwatres.2019.103406 DOI: https://doi.org/10.1016/j.advwatres.2019.103406

Guirado, E., Blanco-Sacristán, J., Rigol-Sánchez, J. P., Alcaraz-Segura, D., & Cabello, J. (2019). A multi-temporal object-based image analysis to detect long-lived shrub cover changes in drylands. Remote Sensing, 11(22), 1–17. https://doi.org/10.3390/rs11222649 DOI: https://doi.org/10.3390/rs11222649

Huang, F., Zhang, D., & Chen, X. (2019). Vegetation response to groundwater variation in arid environments: Visualization of research evolution, synthesis of response types, and estimation of groundwater threshold. International Journal of Environmental Research and Public Health, 16(10). https://doi.org/10.3390/ijerph16101849 DOI: https://doi.org/10.3390/ijerph16101849

Humpenöder, F., Karstens, K., Lotze-Campen, H., Leifeld, J., Menichetti, L., Barthelmes, A., & Popp, A. (2020). Peatland protection and restoration are key for climate change mitigation. Environmental Research Letters, 15(10). https://doi.org/10.1088/1748-9326/abae2a DOI: https://doi.org/10.1088/1748-9326/abae2a

Imfeld, N., Sedlmeier, K., Gubler, S., Correa Marrou, K., Davila, C. P., Huerta, A., Lavado-Casimiro, W., Rohrer, M., Scherrer, S. C., & Schwierz, C. (2021). A combined view on precipitation and temperature climatology and trends in the southern Andes of Peru. International Journal of Climatology, 41(1), 679–698. https://doi.org/10.1002/joc.6645 DOI: https://doi.org/10.1002/joc.6645

Jiang, R., Gan, T. Y., Xie, J., Wang, N., & Kuo, C. C. (2017). Historical and potential changes of precipitation and temperature of Alberta subjected to climate change impact: 1900–2100. Theoretical and Applied Climatology, 127(3–4), 725–739. https://doi.org/10.1007/s00704-015-1664-y DOI: https://doi.org/10.1007/s00704-015-1664-y

Leng, L. Y., Ahmed, O. H., & Jalloh, M. B. (2019). Brief review on climate change and tropical peatlands. Geoscience Frontiers, 10(2), 373–380. https://doi.org/10.1016/j.gsf.2017.12.018 DOI: https://doi.org/10.1016/j.gsf.2017.12.018

May, R. Von, Catenazzi, A., Angulo, A., & Venegas, P. J. (2012). Investigación y conservación de la biodiversidad en Perú: importancia del uso de técnicas modernas y procedimientos administrativos eficientes. Revista Peruana de Biología, 19(3), 351–358. DOI: https://doi.org/10.15381/rpb.v19i3.1055

Meneses, R., Loza Herrera, S., Lliully, A., Palabral, A., & Anthelme, F. (2014). Métodos para cuantificar diversidad y productividad vegetal de los bofedales frente al cambio climático. Ecología en Bolivia, 49(3), 42–55.

Michelutti, N., Wolfe, A. P., Cooke, C. A., Hobbs, W. O., Vuille, M., & Smol, J. P. (2015). Climate change forces new ecological states in tropical Andean lakes. PLoS ONE, 10(2), 1–10. https://doi.org/10.1371/journal.pone.0115338 DOI: https://doi.org/10.1371/journal.pone.0115338

Moreno, T. (1996). Lagunas Altoandinas Del Sur Del Perú: Características Químicas. Ciencia & Desarrollo, 3, 89–95.

Pang, G., Wang, X., & Yang, M. (2017a). Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quaternary International, 444, 1–10. https://doi.org/10.1016/j.quaint.2016.08.038

Pang, G., Wang, X., & Yang, M. (2017b). Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quaternary International, 444, 87–96. https://doi.org/10.1016/j.quaint.2016.08.038 DOI: https://doi.org/10.1016/j.quaint.2016.08.038

Paula, P. A., Zambrano, L., & Paula, P. (2018). Multitemporal Analysis of vegetation change at Chimborazo Reserve as a result of climate change. Enfoque UTE, 2, 125–137. http://ingenieria.ute.edu.ec/enfoqueute/ DOI: https://doi.org/10.29019/enfoqueute.v9n2.252

Pérez-Jiménez, S. (2018). Impacto ambiental de la Compañía minera Southern Perú Cooper Corporation en América Latina: Una aproximación histórica de comienzos del siglo XX a la actualidad. Revista Geográfica de América Central, 3(61E), 489–503. https://doi.org/10.15359/rgac.61-3.25 DOI: https://doi.org/10.15359/rgac.61-3.25

Polk, M. H., Young, K. R., Cano, A., & León, B. (2019). Vegetation of andean wetlands (bofedales) in huascarán national park, Peru. Mires and Peat, 24, 1–26. https://doi.org/10.19189/MaP.2018.SNPG.387

Rojas, N., Barboza, E., Maicelo, L., Oliva, S., & Salas, R. (2019). Deforestación en la Amazonía peruana: índices de cambios de cobertura y uso del suelo basado en SIG. Boletín de la Asociación de Geógrafos Españoles, 2538(81), 1–34. https://doi.org/10.21138/bage.2538a DOI: https://doi.org/10.21138/bage.2538a

Rolando, J. L., Turin, C., Ramírez, D. A., Mares, V., Monerris, J., & Quiroz, R. (2017). Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land-use and climate changes. Agriculture, Ecosystems and Environment, 236, 221–233. https://doi.org/10.1016/j.agee.2016.12.010 DOI: https://doi.org/10.1016/j.agee.2016.12.010

Rudolph, D. L., Sultan, R., Garfias, J., & McLaren, R. G. (2006). Significance of enhanced infiltration due to groundwater extraction on the disappearance of a headwater lagoon system: Toluca Basin, Mexico. Hydrogeology Journal, 14(1–2), 115–130. https://doi.org/10.1007/s10040-005-0463-4 DOI: https://doi.org/10.1007/s10040-005-0463-4

Salamanca Gómez, M. Á. (2018). Análisis multitemporal sobre la pérdida del espejo de agua sobre el humedal laguna La Herrera por efectos antrópicos asociados a la minería.

Salem, J., Amonkar, Y., Maennling, N., Lall, U., Bonnafous, L., & Thakkar, K. (2018). An analysis of Peru: Is water driving mining conflicts? Resources Policy, 58, 1–9. https://doi.org/10.1016/j.resourpol.2018.09.010 DOI: https://doi.org/10.1016/j.resourpol.2018.09.010

Sonter, L. J., Ali, S. H., & Watson, J. E. M. (2018). Mining and biodiversity: Key issues and research needs in conservation science. Proceedings of the Royal Society B: Biological Sciences, 285(1892). https://doi.org/10.1098/rspb.2018.1926 DOI: https://doi.org/10.1098/rspb.2018.1926

Sotomayor Melo, D. A., & Jiménez Milón, P. (2008). Condiciones Meteorológicas y Dinámica Vegetal del Ecosistema Costero Lomas de Atiquipa (Caravelí – Arequipa) en el Sur eel Perú. Ecología Aplicada, 7(1–2), 1. https://doi.org/10.21704/rea.v7i1-2.353 DOI: https://doi.org/10.21704/rea.v7i1-2.353

Stefanova, A., Hesse, C., Krysanova, V., & Volk, M. (2019). Assessment of Socio-Economic and Climate Change Impacts on Water Resources in Four European Lagoon Catchments. Environmental Management, 64(6), 701–720. https://doi.org/10.1007/s00267-019-01188-1 DOI: https://doi.org/10.1007/s00267-019-01188-1

Sulca, L., Franco, P., & Oyague, E. (2019). Caracterización trófica de dos bodefales de la provincia de Candarave, región Tacna. Ciencia & Desarrollo, 16(21), 37–49. https://doi.org/10.33326/26176033.2017.21.728 DOI: https://doi.org/10.33326/26176033.2017.21.728

Van Dover, C. L., Ardron, J. A., Escobar, E., Gianni, M., Gjerde, K. M., Jaeckel, A., Jones, D. O. B., Levin, L. A., Niner, H. J., Pendleton, L., Smith, C. R., Thiele, T., Turner, P. J., Watling, L., & Weaver, P. P. E. (2017). Biodiversity loss from deep-sea mining. Nature Geoscience, 10(7), 464–465. https://doi.org/10.1038/ngeo2983 DOI: https://doi.org/10.1038/ngeo2983

Verhulst, N., & Govaerts, B. (2010). The normalized difference vegetation index (NDVI) GreenSeeker TM handheld sensor: Toward the integrated evaluation of crop management Part A: Concepts and case studies. 16. https://repository.cimmyt.org/bitstream/handle/10883/550/94192.pdf?sequence=1&isAllowed=y

Vila, I., Pardo, R., & Scott, S. (2007). Freshwater fishes of the Altiplano. Aquatic Ecosystem Health and Management, 10(2), 201–211. https://doi.org/10.1080/14634980701351395 DOI: https://doi.org/10.1080/14634980701351395

Winslow, L. A., Read, J. S., Hansen, G. J. A., & Hanson, P. C. (2014). Small lakes show muted climate change signal in deepwater temperatures. Geophysical Research Letters, 42, 355–361. https://doi.org/10.1002/2014GL062325.Received DOI: https://doi.org/10.1002/2014GL062325

Wongchuig, S. C., Mello, C. R., & Chou, S. C. (2018). Projections of the impacts of climate change on the water deficit and on the precipitation erosive indexes in Mantaro River Basin, Peru. Journal of Mountain Science, 15(2), 264–279. https://doi.org/10.1007/s11629-017-4418-8 DOI: https://doi.org/10.1007/s11629-017-4418-8

Wu, Q. (2017). GIS and Remote Sensing Applications in Wetland Mapping and Monitoring. Comprehensive Geographic Information Systems, 3(September 2017), 140–157. https://doi.org/10.1016/B978-0-12-409548-9.10460-9 DOI: https://doi.org/10.1016/B978-0-12-409548-9.10460-9

Yap, A. (2015). Análisis multitemporal de glaciares y lagunas. Pontifica Universidad Católica Del Peru.

Yaranga, R., Custodio, M., Chanamé, F., & Pantoja, R. (2018). Floristic diversity in grasslands according to plant formation in the Shullcas river sub-basin, Junin, Peru. Scientia Agropecuaria, 9(4), 511–517. https://doi.org/10.17268/sci.agropecu.2018.04.06 DOI: https://doi.org/10.17268/sci.agropecu.2018.04.06

Zutta, B. R., Rundel, P. W., Saatchi, S., Casana, J. D., Gauthier, P., Soto, A., Velazco, Y., & Buermann, W. (2012). Prediciendo la distribución de Polylepis: bosques Andinos vulnerables y cada vez más importantes. Revista Peruana de Biología, 19(2), 205–212. https://doi.org/10.15381/rpb.v19i2.849 DOI: https://doi.org/10.15381/rpb.v19i2.849