Cinética en la biodegradación de cianuro por Bacillus sp. en condiciones alcalinas
Contenido principal del artículo
Resumen
El cianuro es un compuesto altamente tóxico que se utiliza en diversas actividades industriales, que representa un riesgo ambiental difícil de controlar. Este estudio tuvo como objetivo aislar cepas de bacterias nativas provenientes de un pasivo ambiental minero con capacidad de tolerar cianuro y determinar la cinética de biodegradación de cianuro de la cepa más eficiente utilizando un biorreactor tipo batch en condiciones alcalinas. Los resultados permitieron aislar siete cepas bacterianas que tuvieron la capacidad de tolerar hasta 800 ppm de cianuro libre y una eficiencia de biodegradación entre 50% y 96%. La cepa 2 de Bacillus sp. presentó una eficiencia de degradación del 96,8 % en 36 horas. El análisis de la biodegradación siguió una cinética de primer orden (k1 = 0,06649 mg/(mg·h), R2 = 0,97), lo cual indica que la cepa presenta gran potencial para su aplicación en estudios de biorremediación de áreas contaminadas con cianuro.
Descargas
Detalles del artículo
Citas
Agboola, O., Babatunde, D. E., Sunday, O., Fayomi, I., Sadiku, R., Article, R., Thangarasu-Sarasvathi, P., Rosano-Ortega, G., Anusha, P., Natarajan, D., Araujo, F. S. M., Taborda-Llano, I., Nunes, E. B., Radbury, J. O. H. N. F. B., Cesário, C., Takeshi, L., Mendes, E., Pine, W., Antonio, J., … Predictions, T. (2020). A review on the impact of mining operation: Monitoring, assessment and management. 1(October), 1070-1072. Results in Engineering, 8. https://doi.org/10.1016/j.rineng.2020.100181
Akcil, A. (2003). Destruction of cyanide in gold mill effluents: Biological versus chemical treatments. Biotechnology Advances, 21(6), 501–511. https://doi.org/10.1016/S0734-9750(03)00099-5
Alvarado-López, M. J., Garrido-Hoyos, S. E., Raynal-Gutiérrez, M. E., El-Kassis, E. G., Luque-Almagro, V. M., & Rosano-Ortega, G. (2023). Cyanide Biodegradation by a Native Bacterial Consortium and Its Potential for Goldmine Tailing Biotreatment. Water, 15(8), 1595. https://doi.org/10.3390/w15081595
Alvarez Rosario, C. G., Vallenas-Arévalo, A. T., Arévalo, S. J., Romano Espinosa, D. C., & Soares Tenório J. A. (2022). Biodegradation of cyanide using a Bacillus subtilis strain isolated from artisanal gold mining tailings. Braz. J. Chem. Eng. https://doi.org/https://doi.org/10.1007/s43153-022-00228-4
Alvillo-Rivera, A., Garrido-Hoyos, S., Buitrón, G., Thangarasu-Sarasvathi, P., & Rosano-Ortega, G. (2021). Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 12, 1418–1433. https://doi.org/10.1016/j.jmrt.2021.03.030
Araujo, F. S. M., Taborda-llano, I., & Nunes, E. B. (2022). Recycling and Reuse of Mine Tailings : A Review of Advancements and Their Implications.
Arce-Inga, M., González-Pérez, A. R., Hernandez-Diaz, E., Chuquibala-Checan, B., Chavez-Jalk, A., Llanos-Gomez, K. J., Leiva-Espinoza, S. T., Oliva-Cruz, S. M., & Cumpa-Velasquez, L. M. (2022). Bioremediation Potential of Native Bacillus sp. Strains as a Sustainable Strategy for Cadmium Accumulation of Theobroma cacao in Amazonas Region. Microorganisms, 10(11). https://doi.org/10.3390/microorganisms10112108
Bôto, M. L., Magalhães, C., Perdigão, R., Alexandrino, D. A. M., Fernandes, J. P., Bernabeu, A. M., Ramos, S., Carvalho, M. F., Semedo, M., LaRoche, J., Almeida, C. M. R., & Mucha, A. P. (2021). Harnessing the Potential of Native Microbial Communities for Bioremediation of Oil Spills in the Iberian Peninsula NW Coast. Frontiers in Microbiology, 12(April). https://doi.org/10.3389/fmicb.2021.633659
Cáceda Quiroz, C. J., Fora Quispe, G. d. L., Carpio Mamani, M., Maraza Choque, G. J., & Sacari Sacari, E. J. (2023). Cyanide Bioremediation by Bacillus subtilis under Alkaline Conditions. Water, 15(20), 3645. https://doi.org/10.3390/w15203645
Dash, R. R., Gaur, A., & Balomajumder, C. (2009). Cyanide in industrial wastewaters and its removal: A review on biotreatment. Journal of Hazardous Materials, 163(1), 1–11. https://doi.org/10.1016/j.jhazmat.2008.06.051
Donato, D., Ricci, P. F., Noller, B., Moore, M., Possingham, H., & Nichols, O. (2008). The protection of wildlife from mortality: Hypothesis and results for risk assessment. Environment International, 34(6), 727–736. https://doi.org/10.1016/j.envint.2007.10.003
Dursun, A. Y., & Aksu, Z. (2000). Biodegradation kinetics of ferrous(II) cyanide complex ions by immobilized Pseudomonas fluorescens in a packed bed column reactor. Process Biochemistry, 35(6), 615–622. https://doi.org/10.1016/S0032-9592(99)00110-7
Farfan Pajuelo, D. G., Carpio Mamani, M., Maraza Choque, G. J., Chachaque Callo, D. M., & Cáceda Quiroz, C. J. (2023). Effect of Lyoprotective Agents on the Preservation of Survival of a Bacillus cereus Strain PBG in the Freeze-Drying Process. Microorganisms, 11(11), 2705. https://doi.org/10.3390/microorganisms11112705
Guamán, M., & Nieto, D. (2018). Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. Journal of Water Process Engineering, 23, 84-90. https://doi.org/10.1016/j.jwpe.2018.03.008
Gupta, N., Balomajumder, C., & Agarwal, V. K. (2010). Enzymatic mechanism and biochemistry for cyanide degradation: A review. Journal of Hazardous Materials, 176(1-3), 1-13. https://doi.org/10.1016/j.jhazmat.2009.11.038
Huertas, M. J., Sáez, L. P., Roldán, M. D., Luque-Almagro, V. M., Martínez-Luque, M., Blasco, R., Castillo, F., Moreno-Vivián, C., & García-García, I. (2010). Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. Journal of Hazardous Materials, 179(1–3), 72–78. https://doi.org/10.1016/j.jhazmat.2010.02.059
Jafarpour, A., & Khatami, S. (2021). Analysis of Environmental Costs’ Effect in Green Mining Strategy Using a System Dynamics Approach: A Case Study. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/4893776
Javaheri Safa, Z., Aminzadeh, S., Zamani, M., & Motallebi, M. (2017a). Significant increase in cyanide degradation by Bacillus sp. M01 PTCC 1908 with response surface methodology optimization. AMB Express, 7(1). https://doi.org/10.1186/s13568-017-0502-2
Kaksonen, A. H., Mudunuru, B. M., & Hackl, R. (2014). The role of microorganisms in gold processing and recovery - A review. Hydrometallurgy, 142, 70-83. https://doi.org/10.1016/j.hydromet.2013.11.008
Kandasamy, S., Dananjeyan, B., Krishnamurthy, K., & Benckiser, G. (2015). Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater. Brazilian Journal of Microbiology, 46(3), 659-666. https://doi.org/10.1590/S1517-838246320130516
Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268. https://doi.org/10.1016/j.gexplo.2016.11.021
Khamar, Z., Makhdoumi-kakhki, A., & Gharaie, M. H. M. (2015). International Biodeterioration & Biodegradation Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. International Biodeterioration & Biodegradation, 99, 123–128. https://doi.org/10.1016/j.ibiod.2015.01.009
Karamba, K. I., Ahmad, S. A., Zulkharnain, A., Syed, M. A., Khalil, K. A., Shamaan, N. A., Dahalan, F. A., & Shukor, M. Y. (2016). Optimisation of biodegradation conditions for cyanide removal by Serratia marcescens strain AQ07 using one-factor-at-a-time technique and response surface methodology. Rendiconti Lincei, 27(3), 533-545. https://doi.org/10.1007/s12210-016-0516-8
Kavamura, V. N., Aono, A. H., & Esposito, E. (2019). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Comprehensive Biotechnology, 6, 240–252. https://doi.org/10.1016/B978-0-444-64046-8.00350-5
Kovar, K. K., & Egli, T. (1998). Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics. Microbiology and Molecular Biology Reviews, 62(3), 646-666. https://doi.org/10.1128/mmbr.62.3.646-666.1998
Kumar, B. L., & Gopal, D. V. R. S. (2015). Effective role of indigenous microorganisms for sustainable environment. 3 Biotech, 5(6), 867-876. https://doi.org/10.1007/s13205-015-0293-6
Kumar, V., Kumar, V., & Bhalla, T. C. (2018). Alkaline active cyanide dihydratase of Flavobacterium indicum MTCC 6936: Growth optimization, purification, characterization and in silico analysis. International Journal of Biological Macromolecules, 116(2017), 591-598. https://doi.org/10.1016/j.ijbiomac.2018.05.075
Lobo, C. C., Bertola, N. C., & Contreras, E. M. (2016). Inhibition kinetics during the oxidation of binary mixtures of phenol with catechol, resorcinol and hydroquinone by phenol acclimated activated sludge. Brazilian Journal of Chemical Engineering, 33(1), 59-71. https://doi.org/10.1590/0104-6632.20160331s20150173
Lovasoa, C. R., Hela, K., Harinaivo, A. A., & Hamma, Y. (2017). Bioremediation of soil and water polluted by cyanide: A review. African Journal of Environmental Science and Technology, 11(6), 272–291. https://doi.org/10.5897/ajest2016.2264
Luque-Almagro, V. M., Blasco, R., Martínez-Luque, M., Moreno-Vivián, C., Castillo, F., & Roldán, M. D. (2011). Bacterial cyanide degradation is under review: Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic cyanotroph. Biochemical Society Transactions, 39(1), 269–274. https://doi.org/10.1042/BST0390269
Luque-Almagro, V. M., Moreno-Vivián, C., & Roldán, M. D. (2016). Biodegradation of cyanide wastes from mining and jewellery industries. Current Opinion in Biotechnology, 38, 9–13. https://doi.org/10.1016/j.copbio.2015.12.004
Luque-Almagro, V. M., Cabello, P., Sáez, L. P., Olaya-Abril, A., Moreno-Vivián, C., & Roldán, M. D. (2018). Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Applied Microbiology and Biotechnology, 102(3), 1067–1074. https://doi.org/10.1007/s00253-017-8678-6
Luo, Y. (2019). Environmental problems in the mining of metal minerals. Earth and Environmental Science, 384(1). https://doi.org/https://doi.org/10.1088/1755-1315/384/1/012195
Manso Cobos, I. M., Ibáñez García, M. I., Moreno, F. de la P., Sáez Melero, L. P., Luque-Almagro, V. M., Rodríguez, F. C., Ruiz, M. D. R., Jiménez, M. A. P., & Vivián, C. M. (2015). Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity. Microbial Cell Factories, 14(1), 1-12. https://doi.org/10.1186/s12934-015-0267-8
Mekuto, L., Jackson, V. A., & Obed, S. K. (2014). Biodegradation of Free Cyanide Using Bacillus Sp. Consortium Dominated by Bacillus Safensis, Lichenformis and Tequilensis Strains: A Bioprocess Supported Solely with Whey. Journal of Bioremediation & Biodegradation, 05(02). https://doi.org/10.4172/2155-6199.S18-004
Mekuto, L., Alegbeleye, O. O., Ntwampe, S. K. O., Ngongang, M. M., Mudumbi, J. B., & Akinpelu, E. A. (2016). Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions. 3 Biotech, 6(173), 1–11. https://doi.org/10.1007/s13205-016-0491-x
Mondal, P., Balomajumder, C., & Dwivedi, N. (2017). Bioremoval of cyanide from aqueous solution using Tectona grandis leaves powder: a potential bioadsorbent. International Journal of Environmental Technology and Management, 19(3/4), 198. https://doi.org/10.1504/ijetm.2016.10003103
Monod, J. (1949). The growth of bacterial cultures. Annual Reviews. Microbiala, 3(Xl), 371-394.
Moradkhani, M., Yaghmaei, S., & Nejad, Z. G. (2018). Biodegradation of cyanide under alkaline conditions by a strain of Pseudomonas putida isolated from gold mine soil and optimization of process variables through response surface methodology (RSM). Periodica Polytechnica Chemical Engineering, 62(3), 265-273. https://doi.org/10.3311/PPch.10860
Mudder, T., & Botz, M. (2004). Cyanide and society: a critical review. Ejmp & Ep (European Journal of Mineral Processing and Environmental Protection, 4(1), 62–74. https://doi.org/1303-0868
Nepali, B., & Bhattarai, S. (2020). Identification of Pseudomonas fluorescens using different biochemical tests. International Journal of Applied Biology, 2(2), 27-32. https://doi.org/10.13140/RG.2.2.23860.40328
Okpokwasili, G. C., & Nweke, C. O. (2006). Microbial growth and substrate utilization kinetics. African Journal of Biotechnology, 5(4), 305-317.
Pal, P., & Kumar, R. (2014). Treatment of coke wastewater: A critical review for developing sustainable management strategies. Separation and Purification Reviews, 43(2), 89–123. https://doi.org/10.1080/15422119.2012.717161
Panikov, N. S. (2019). Microbial growth dynamics. Comprehensive Biotechnology, 1, 231-273. https://doi.org/10.1016/B978-0-444-64046-8.00019-7
Raybuck, S. A. (1992). Microbes and microbial enzymes for cyanide degradation. Biodegradation, 3(1), 3–18. https://doi.org/10.1007/BF00189632
Razanamahandry, L. C, Andrianisa, H. A., Karoui, H., Kouakou, K. M., & Yacouba, H. (2016). Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. Chemosphere, 157, 71-78. https://doi.org/10.1016/j.chemosphere.2016.05.020
Razanamahandry, L. C., Onwordi, C. T., Saban, W., Bashir, A. K. H., Mekuto, L., Malenga, E., Manikandan, E., Fosso-Kankeu, E., Maaza, M., & Ntwampe, S. K. O. (2019). Performance of various cyanide degrading bacteria on the biodegradation of free cyanide in water. Journal of Hazardous Materials, 380, 6. https://doi.org/10.1016/j.jhazmat.2019.120900
Singh, N., & Balomajumder, C. (2016). Batch growth kinetic studies for elimination of phenol and cyanide using mixed microbial culture. Journal of Water Process Engineering, 11, 130-137. https://doi.org/10.1016/j.jwpe.2016.04.006
Singh, U., Arora, N. K., & Sachan, P. (2018). Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri. Brazilian Journal of Microbiology, 49(1), 38-44. https://doi.org/10.1016/j.bjm.2016.12.013
Tiong, B., Bahari, Z. M., Irwan Shah Lee, N. S., Jaafar, J., Ibrahim, Z., & Shahir, S. (2015). Cyanide degradation by Pseudomonas pseudoalcaligenes strain W2 isolated from mining effluent. Sains Malaysiana, 44(2), 233-238. https://doi.org/10.17576/jsm-2015-4402-10
Uribe-Ramírez, D., Cristiani-Urbina, E., & Morales-Barrera, L. (2024). Biodegradation of Free Cyanide by a New Isolated Alkaliphilic Bacillus licheniformis Strain. Microbiology Research, 15(1), 33-49. https://doi.org/10.3390/microbiolres15010003
Vallenas-Arévalo, A. T., Rosario, C. G. A., Espinosa, D. C. R., & Tenório, J. A. S. (2018). Bacterial degradation of free cyanide in alkaline medium using bacillus licheniformis strain. Minerals, Metals and Materials Series, Part F6, 367-373. https://doi.org/10.1007/978-3-319-72362-4_32
Wu, C. F., Xu, X. M., Zhu, Q., Deng, M. C., Feng, L., Peng, J., Yuan, J. P., & Wang, J. H. (2014). An effective method for the detoxification of cyanide-rich wastewater by Bacillus sp. CN-22. Applied Microbiology and Biotechnology, 98(8), 3801-3807. https://doi.org/10.1007/s00253-013-5433-5