Acción bioxidativa de cultivos microbianos biolixiviantes sobre la arsenopirita
Contenido principal del artículo
Resumen
La arsenopirita es una fuente mineral para la recuperación de oro puro, sobre ella se emplea la biooxidación, tecnología muy poco estudiada y aplicada en nuestro país a pesar que es de bajo costo, eficiente y amigable con el ambiente. Este trabajo tuvo como objetivo evaluar el grado de biooxidación en dos diferentes concentraciones de arsenopirita por cultivos microbianos de colección que previamente fueron adaptados al 1 % de arsenopirita en el medio de cultivo 0K. La arsenopirita se tamizó en un tamice Tyler menor de 200 y se agregó en concentraciones de 8 y 12 % en los biorreactores que contuvieron 700 ml de medio fermentativo (630 ml de medio de cultivo esterilizado con 70 ml de inóculo microbiano). El inóculo estuvo formado por suspensiones de un cultivo microbiano puro y de uno mixto (dos cultivos puros). La incubación se desarrolló a temperatura de ambiente durante 288 horas con aireación. Se evaluó el crecimiento microbiano, pH, hierro total, hierro II, hierro III y la formación de biofilm sobre la superficie de la arsenopirita. Se determinó que el cultivo microbiano mixto actuando sobre la arsenopirita al 8 % produjo el mayor grado de biooxidación correspondiente a una producción de 8197.7 mg L-1 de hierro III.
Descargas
Detalles del artículo
Citas
Arroyave, D., Márquez, M., Gallego, D., & Pacheco, G. (2011). Evaluación y caracterización mineralógica del proceso de biooxidación en un reactor continuo de tanque agitado. Dyna, 77(164), 18-29.
Ayala, J., & Pardo, R. (1995). Optimización por Diseños Experimentales con Aplicaciones en Ingeniería. Lima: CONCYTEC.
Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiology reviews, 20(3-4), 591-604. DOI: https://doi.org/10.1111/j.1574-6976.1997.tb00340.x
Brahmaprakash, G. P., Devasia, P., Jagadish, K. S., Natarajan, K. A., & Rao, G. R. (1988). Development of Thiobacillus ferrooxidans ATCC 19859 strains tolerant to copper and zinc. Bulletin of Materials Science, 10(5), 461-465. DOI: https://doi.org/10.1007/BF02744659
Brierley, C. L., & Le Roux, N. W. (1978). Bacterial leaching. CRC critical reviews in microbiology, 6(3), 207-262. DOI: https://doi.org/10.3109/10408417809090623
Bulaev, A., Melamud, V., & Boduen, A. (2020). Bioleaching of non-ferrous metal from arsenic-bearing sulfide concentrate. Solid state phenomena, 299. DOI: https://doi.org/10.4028/www.scientific.net/SSP.299.1064
Chiacchiarini, P., De la Fuente, V., & Donati, E. (2000). Pre-tratamiento de un mineral refractario de oro mediante células de Thiobacilli.
Colmer, A. R., & Hinkle, M. E. (1947). The role of microorganisms in acid mine drainage: a preliminary report. Science, 106(2751), 253-256. DOI: https://doi.org/10.1126/science.106.2751.253
Corkhill, C. L., & Vaughan, D. J. (2009). Arsenopyrite oxidation. Applied Geochemistry, 24 (12), 2342-2361. https://doi.org/10.1016/j.apgeochem.2009.09.008 DOI: https://doi.org/10.1016/j.apgeochem.2009.09.008
Cuba, M., & Pastrana, G. (2018). Recuperación de oro a partir de un mineral refractario de pirrotita por biooxidación en la biominería aurífera Calpa- Arequipa (tesis para obtener el título profesional). Universidad Nacional del Centro del Sur. Huancayo.
Daoud, J., & Karamanev, D. (2006). Formation of jarosite during Fe2+ oxidation by A. ferrooxidans. Minerals Engineering, 19(9), 960–967. DOI: https://doi.org/10.1016/j.mineng.2005.10.024
Das, A., Modak, J. M., & Natarajan, K. A. (1998). Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans. Minerals Engineering, 10(7), 743-749. DOI: https://doi.org/10.1016/S0892-6875(97)00052-6
Deng, Y., Zhang, D., Xia, J., Nie, Z., Liu, H., Wang, N., & Xue, Z. (2020). Enhancement of arsenopyrite bioleaching by different Fe (III) compounds through changing composition and structure of passivation layer. Journal of Materials Research and Technology, 9(6). DOI: https://doi.org/10.1016/j.jmrt.2020.08.088
Deveci, H., Akcil, A., & Alp, I. (2004). Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy, 73(3), 293-303. DOI: https://doi.org/10.1016/j.hydromet.2003.12.001
Donati, E. (2006). Biominería: Una tecnología alternativa. http://www.voces.antahualan.com.ar/edi11.htm
Gilbert, S. R., Bounds, C. O., & Ice, R. R. (1988). Comparative economics of bacterial oxidation and roasting as a pre-treatment step for gold recovery from an auriferous pyrite concentrate. Can. Min. Metall. Bull., 81(910), 89-94.
Kelly, D. P., & Wood, A. P. (2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 50(2), 511-516. DOI: https://doi.org/10.1099/00207713-50-2-511
Khalid, Z. M., & Malik, K. A. (1988). Leaching of chalcopyrite by Thiobacillus thiooxidans and oxidized copper ore by Thiobacillus ferrooxidans isolated from local environments. MIRCEN journal of applied microbiology and biotechnology, 4(4), 447-453. DOI: https://doi.org/10.1007/BF00940171
Leuze, J. A. De. & Farrow, B. A. (2011). Modulación de Biopelículas de microorganismos para lixiviación de minerales.
López, T., Domínguez, L., & García, J. (2007). Arreglo estructural de un consorcio microbiano de interés alimentario en la producción del vinagre. Trabajo presentado en el octavo Congreso Nacional de Microscopía. México.
Lundgren, D. G., & Silver, M. (1980). Ore leaching by bacteria. Annual Reviews in Microbiology, 34(1), 263-283. DOI: https://doi.org/10.1146/annurev.mi.34.100180.001403
Márquez, M. (1999). Mineralogia dos processos de oxidação sobre pressãoe bacteriana do minerio de ouro da mina São Bento. MG (Tese de doutorado). Universidad de Brasilia.
Márquez, M., Gaspar, J., Bessler, K. E., & Magela, G. (2006). Process mineralogy of bacterial oxidized gold ore in São Bento Mine (Brasil). Hydrometallurgy, 83(1), 114-123. DOI: https://doi.org/10.1016/j.hydromet.2006.03.045
Mason, L. J., & Rice, N. M. (2002). The adaptation of Thiobacillus ferrooxidans for the treatment of nickel–iron sulphide concentrates. Minerals Engineering, 15(11), 795-808. DOI: https://doi.org/10.1016/S0892-6875(02)00118-8
Mejía, E. (2010). Mineralogía del proceso de lixiviación bacteriana de calcopirita (CuFeS2), esfarelita (ZnS) y galena (PbS) (tesis de maestría). Universidad Nacional de Colombia. Colombia
Modak, J. M, Vassan, S. S., & Natarajan, K. (1999). Calcium removal from bauxite using Paenibacillus polymyxa. Minerals and Metallurgical Process, 16(4), 6 – 12. DOI: https://doi.org/10.1007/BF03403228
Mousavi, S. M., Jafari, A., Yaghmaei, S., Vossoughi, M., & Roostaazad, R. (2007). Bioleaching of low-grade sphalerite using a column reactor. Hydrometallurgy, 82, 75–82. DOI: https://doi.org/10.1016/j.hydromet.2006.03.001
Natarajan, K. A., Sudeesha, K., & Rao, G. R. (1994). Stability of copper tolerance in Thiobacillus ferrooxidans. Antonie van Leeuwenhoek, 66(4), 303-306. DOI: https://doi.org/10.1007/BF00882764
Ordoñez, J. (2017). Producción de sustancias poliméricas extracelulares de los microorganismos acidófilos Leptospirillum ferrooxiodans y Acidithiobacillus thiooxidans en medio puro y modificado con un mineral aurífero refractario (tesis de titulación). Universidad Técnica Particular de Loja. Ecuador.
Panyushkina, A., Matyushkina, D., & Pobeguts, O. (2020). Understanding stress response to high-arsenic gold-bearing sulfide concéntrate in extremely metal – resistant acidophile Sulfobacillus thermotolerans. Microorganisms, 8, 1076. DOI: https://doi.org/10.3390/microorganisms8071076
Pavez, B. (2011). Cuantificación de la expresión del gen omp-40 y de los genes que conforman el operón gal, vinculado a cambios cinéticos de Acidithiobacillus ferrooxidans en respuesta adaptativa a mineral sulfurado de cobre (tesis para optar el título de Bioquímico).
Rodríguez, Y., Ballester, A., Blázquez, M. L., González, F., & Muñoz J. A. (2001). Mecanismo de biolixiviación de sulfuros metálicos. Revista de metalurgia, 37(6), 665-672. DOI: https://doi.org/10.3989/revmetalm.2001.v37.i6.534
Rossi, G. (1990). Biohydrometallurgy. McGraw-hill.
Shi, S., & Fang, Z. (2005). Bioleaching of marmatite flotation concentrate by adapted mixed mesoacidophilic cultures in an Air-lift reactor. International Journal of Mineral Processing. 76, 3–12. DOI: https://doi.org/10.1016/j.minpro.2004.05.005
Suzuki, I. (2001). Microbial leaching of metals from sulfide minerals. Biotechnology advances, 19(2), 119-132. DOI: https://doi.org/10.1016/S0734-9750(01)00053-2
Temple, K. L., & Colmer, A. R. (1951). The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans, Journal of bacteriology. 605-611. DOI: https://doi.org/10.1128/jb.62.5.605-611.1951
Torma, A. (1977). The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Advances in Biochemical Engineering, 6, 1-37. Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/3-540-08363-4_1
Tuovinen, O. H., Niemelä, S. I., & Gyllenberg, H. G. (1971). Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek, 37(1), 489-496. DOI: https://doi.org/10.1007/BF02218519
Zhao, H., Yang, H., Tong, L., Zhang, Q., & Kong, Y. (2020). Biooxidation-thiosulfate leaching of refractory gold concentrate. International Journal of minerals, metallurgy and materials, 27(8) 1075. DOI: https://doi.org/10.1007/s12613-020-1964-9