Control of Colletotrichum “causal agent of anthracnose in mango fruit (Mangifera indica L.)” applying Trichoderma metabolites

Main Article Content

Jose Sandoval Niebles
Jhonny Paredes Escobar
Karen Villanueva Centeno
Daladier Castillo Cotrina
Rocío Murgueytio Gómez
Rosa Liñan Abanto
Rosalía Callohuari Quispe

Abstract

The use of controlling fungi for the control of phytopathogenic fungi is currently being widely applied as part of the organic agriculture process but also for the marketing of export fruits that are exposed to fungal diseases that cause significant losses. The objective of this work was to evaluate the control of Colletotrichum "causal agent of anthracnose in mango fruit (Mangifera indica L.)" by applying Trichoderma metabolites to determine the percentages of mycelial growth inhibition and germination inhibition. of the conidia of Colletotrichum sp. and control of Colletotrichum anthracnose lesions in mango fruit. In vitro evaluations were made applying antagonism of T. harzianum and T. viride against Colletotrichum sp. in dual tests and solution of Trichoderma metabolites against suspensions of Colletotrichum sp. conidia; and in vivo by applying Trichoderma metabolite solutions on mango fruit infected with Colletotrichum sp. The results show that Trichoderma, in vitro, as a fungal inoculum, and as a solution of metabolites, respectively inhibit mycelial growth and conidia germination of Colletotrichum sp. significantly; and in vivo as a solution of metabolites on the fruit of the mango control the anthracnose of Colletotrichum sp.; being the solution of metabolites of T. viride the one that exerts a greater control comparable to that of a biocontroller that can be used to control anthracnose in mango fruit, especially for export.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sandoval Niebles, J. ., Paredes Escobar, J. ., Villanueva Centeno, K. ., Castillo Cotrina, D. ., Murgueytio Gómez, R. ., Liñan Abanto, R. ., & Callohuari Quispe, R. . (2022). Control of Colletotrichum “causal agent of anthracnose in mango fruit (Mangifera indica L.)” applying Trichoderma metabolites. Revista Ciencias Biológicas Y Ambientales, 1(1). https://doi.org/10.33326/29585309.2022.1.1597
Section
Artículos

References

Alfiky, A. & Weisskopf, L. (2021). Deciphering Trichoderma-Plant-Pathogen Interactions for Better Development of Biocontrol Applications. Journal of fungi (Basel, Switzerland), 7(1), 61. https://doi.org/10.3390/jof7010061

Ayón, C. B. C.; Esquivel, G. L.; Velasco, C. R.; Virgen, O. E.; Aranguré, A. B. & Campos, O. J. C. (2020). In vitro evaluation of antagonists against soursop fruit pathogens (Annona muricata L.) in Nayarit, Mexico. Revista Brasileira de Fruticultura, 42(2). https://doi.org/10.1590/0100-29452020147

Bissett, J. (1991). A revision of the genus Trichoderma. II. Intrageneric classification. Canadian Journal of Botany, 69, 2357 – 2372. https://doi.org/10.1139/b91-298

Bissett, J. (1991). A revision of the genus Trichoderma. III. Section Pachybasium. Canadian Journal of Botany, 69, 2373 – 2417. https://doi.org/10.1139/b91-298

Bissett, J.; Gams, W.; Jaklitsch, W. & Samuels, G. J. (2015). Accepted Trichoderma names in the year. IMA Fungus, 6(2), 263 – 295. https://doi.org/10.5598/imafungus.2015.06.02.02

Cai, F. & Druzhinina, I. S. (2021) In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity, 107, 1 – 69. https://doi.org/10.1007/s13225-020-00464-4

Cai, L.; Hyde, K. D.; Taylor, P. W. J.; Weir, B.; Waller, J.; Abang, M. M.; Zhang, J. Z.; Yang, Y. L.; Phoulivong, S.; Liu, Z. Y.; Prihastuti, H.; Shivas, R. G.; McKenzie, E. H. C. & Johnston, P. R. (2009). A polyphasic approach for studying Colletotrichum. Fungal Diversity, 39(1), 183 – 204.

Chaverri, P. & Samuels, G. J. (2003). Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae), Species with green ascospores. Studies in Mycology, 48, 1 – 116.

Da Costa, A. A.; de Miranda, R. F.; Costa, F. A. & Ulhoa, C. J. (2021). Potential of Trichoderma piluliferum as a biocontrol agent of Colletotrichum musae in banana fruits. Biocatalysis and agricultural biotechnology, 34, 102028. https://doi.org/10.1016/j.bcab.2021.102028

De la Cruz – Quiroz, R. D.; Roussos, S.; Rodríguez – Herrera, R.; Hernández – Castillo, D. & Aguilar, C. N. (2018). Growth inhibition of Colletotrichum gloeosporioides and Phytophthora capsici by native Mexican Trichoderma strains. Journal of modern science, 4, 237 – 243. https://doi.org/10.1016/j.kijoms.2018.03.002

De los Santos – Villalobos, S.; Guzmán – Ortiz, D. A.; Gómez – Lim, M. A.; Délano – Frier, J. P.; de – Folter, S.; Sánchez-García, P. & Peña – Cabriales, J. J. (2013). Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biological Control, 64(1), 37 – 44. https://doi.org/10.1016/j.biocontrol.2012.10.006

De Zotti, M.; Sella, L.; Bolzonello, A.; Gabbatore, L.; Peggion, C.; Bortolotto, A.; Elmaghraby, I.; Tundo, S. & Favaron, F. (2020). Targeted Amino Acid Substitutions in a Trichoderma Peptaibol Confer Activity against Fungal Plant Pathogens and Protect Host Tissues from Botrytis cinerea Infection. International journal of molecular sciences, 21(20), 7521. https://doi.org/10.3390/ijms21207521

Filizola, P. R. B.; Luna, M. A. C.; de Souza, A. F.; Coelho, I. L.; Laranjeira, D. & Campos – Takaki, G. M. (2019). Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microbial Cell Factories, 18, 89. https://doi.org/10.1186/s12934-019-1108-y

Gálvez - Marroquín, L. A.; Martínez – Bolaños, M.; Cruz – Chávez, M. A.; Ariza – Flores, R.; Cruz – López, J. A.; Magaña – Lira, N.; Cruz de la Cruz, L. L. & Ariza – Hernández, F. J. (2022). Inhibition of mycelial growth and conidium germination of Colletotrichum sp. for organic and inorganic products. Agro Productividad, 15(2), 25 – 32. https://doi.org/10.32854/agrop.v15i2.2051

García – Núñez, H. G.; Martínez – Campos, A. R.; Hermosa – Prieto, M. R.; Monte – Vázquez, E.; Aguilar – Ortigoza, C. J. & González – Esquivel, C. E. (2017). Morphological and molecular characterization of native isolates of Trichoderma and its potential biocontrol against Phytophthora infestans. Revista mexicana de fitopatología, 35(1), 58 – 79. https://doi.org/10.18781/r.mex.fit.1605-4

Gu, X.; Wang, R.; Sun, Q.; Wu, B. & Sun, J. – Z. (2020) Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys, 73, 109 – 132. https://doi.org/10.3897/mycokeys.73.51424

Guigón – López, C.; Guerrero – Prieto, V.; Vargas – Albores, F.; Carvajal – Millán, E.; Ávila – Quezada, G. D.; Bravo – Luna, L.; Ruocco, M.; Lanzuise, S.; Woo, S. & Lorito, M. (2010). Molecular Identification of Trichoderma spp. Strains, in vitro Growth Rate and Antagonism against Plant Pathogen Fungi. Revista mexicana de fitopatología, 28(2), 87 – 96. Consultado el 03 de octubre de 2022. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S018533092010000200002&lng=es&tlng=.

Hewedy, O. A.; Abdel Lateif, K. S.; Seleiman, M. F.; Shami, A.; Albarakaty, F. M. & M El – Meihy, R. (2020). Phylogenetic Diversity of Trichoderma Strains and Their Antagonistic Potential against Soil-Borne Pathogens under Stress Conditions. Biology, 9(8), 189. https://doi.org/10.3390/biology9080189

Jaklitsch, W. M.; Samuels, G. J.; Dodd, S. L.; Lu, B. S. & Druzhinina, I. S. (2006). Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Studies in mycology, 56, 135 – 177. https://doi.org/10.3114/sim.2006.56.04

John, R. P.; Tyagi, R. D.; Prévost, D.; Brar, S. K.; Pouleur, S. & Surampalli, R. Y. (2010). Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 29(12), 1452 – 1459. https://doi.org/10.1016/j.cropro.2010.08.004

Joshi, D.; Singh, P.; Singh, A. K.; Lal, R. J. & Tripathi, N. (2016). Antifungal Potential of Metabolites from Trichoderma sp. Against Colletotrichum falcatum Went Causing Red Rot of Sugarcane. Sugar Tech, 18, 529 – 536. https://doi.org/10.1007/s12355-015-0421-y

Kamle, M.; Kumar, P.; Gupta, V. K.; Tiwari, A. K.; Misra, A. K. & Pandey, B. K. (2013) Identification and phylogenetic correlation among Colletotrichum gloeosporioides pathogen of anthracnose for mango. Biocatalysis and Agricultural Biotechnology, 2 (3), 285 – 287. https://doi.org/10.1016/j.bcab.2013.04.001

Khan, R.; Najeeb, S.; Hussain, S.; Xie, B. & Li, Y. (2020). Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms, 8(6), 817. https://doi.org/10.3390/microorganisms8060817

Konsue, W.; Dethoup, T. & Limtong, S. (2020). Biological Control of Fruit Rot and Anthracnose of Postharvest Mango by Antagonistic Yeasts from Economic Crops Leaves. Microorganisms, 8(3), 317. https://doi.org/10.3390/microorganisms8030317

Landero – Valenzuela, N.; Lara – Viveros, F, M.; Andrade – Hoyos, P.; Aguilar – Pérez, L. A. & Aguado – Rodríguez, G. J. (2016). Alternatives for the control of Colletotrichum spp. Revista mexicana de ciencias agrícolas, 7(5), 1189 – 1198. Consultado el 15 de setiembre de 2022. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S200709342016000501189&lng=es&tlng=en.

Li, M. F.; Li, G. H. & Zhang, K. Q. (2019b). Non-Volatile Metabolites from Trichoderma spp. Metabolites, 9(3), 58. https://doi.org/10.3390/metabo9030058

Li, Q.; Bu, J.; Shu, J; Yu, Z.; Tang, L.; Huang, S.; Guo, T.; Mo, J.; Luo, S.; Solangi G. S. & Hsiang, T. (2019a) Colletotrichum species associated with mango in southern China. Scientific Reports, 9, 18891. https://doi.org/10.1038/s41598-019-54809-4

Lima, P. D.; de Oliveira, K., Vieira, W.; Câmara, M. & de Souza, E. L. (2018). Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil. International journal of food microbiology, 266, 87 – 94. https://doi.org/10.1016/j.ijfoodmicro.2017.11.018

López – López, M. E.; Del – Toro – Sánchez, C. L.; Gutiérrez – Lomelí, M.; Ochoa – Ascencio, S.; Aguilar – López, J. A.; Robles – García, M. A.; Plascencia – Jatomea, M. Bernal – Mercado, A. T.; Martínez – Cruz, O; Ávila – Novoa; M. G.; González – Gómez; J. P. & Guerrero – Medina, P. J. (2022). Isolation and Characterization of Trichoderma spp. for Antagonistic Activity against Avocado (Persea americana Mill) Fruit Pathogens. Horticulturae, 8(8), 714. https://doi.org/10.3390/horticulturae8080714

Luo, S.; Wan, B.; Feng, S. & Shao, Y. (2015). Biocontrol of Postharvest Anthracnose of Mango Fruit with Debaryomyces Nepalensis and Effects on Storage Quality and Postharvest Physiology. Journal of food science, 80(11), M2555 – M2563. https://doi.org/10.1111/1750-3841.13087

Marques, E., Martins, I. & Mello, S.C. (2018). Antifungal potential of crude extracts of Trichoderma spp. Biota Neotropica, 18(1). https://doi.org/10.1590/1676-0611-BN-2017-0418

Mirza, B.; Croley, C. R.; Ahmad, M.; Pumarol, J.; Das, N.; Sethi, G. & Bishayee, A. (2021). Mango (Mangifera indica L.): a magnificent plant with cancer preventive and anticancer therapeutic potential. Critical reviews in food science and nutrition, 61(13), 2125 – 2151. https://doi.org/10.1080/10408398.2020.1771678

Mo, J.; Zhao, G.; Li, Q.; Solangi, G. S.; Tang, L.; Guo, T.; Huang, S. & Hsiang, T. (2018). Identification and Characterization of Colletotrichum Species Associated with Mango Anthracnose in Guangxi, China. Plant disease, 102(7), 1283 – 1289. https://doi.org/10.1094/PDIS-09-17-1516-RE

Morales – Mora, L. A.; Andrade – Hoyos, P.; Valencia – de Ita, M. A.; Romero – Arenas, O.; Silva – Rojas, H. V. & Contreras – Paredes, C. A. (2020). Characterization of strawberry associated fungi and in vitro antagonistic effect of Trichoderma harzianum. Revista mexicana de fitopatología, 38(3), 434 – 449. https://doi.org/10.18781/r.mex.fit.2005-7

Mukherjee, P. K.; Horwitz, B. A. & Kenerley, C. M. (2012). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology (Reading, England), 158(Pt 1), 35 – 45. https://doi.org/10.1099/mic.0.053629-0

Mulatu, A.; Megersa, N.; Abena, T.; Kanagarajan, S.; Liu, Q.; Tenkegna, T. A. & Vetukuri, R. R. (2022). Biodiversity of the Genus Trichoderma in the Rhizosphere of Coffee (Coffea arabica) Plants in Ethiopia and Their Potential Use in Biocontrol of Coffee Wilt Disease. Crops, 2(2), 120 – 141. https://doi.org/10.3390/crops2020010

Ngo, M. T.; Nguyen, M. V.; Han, J. W.; Park, M. S.; Kim, H. & Choi, G. J. (2021). In Vitro and In Vivo Antifungal Activity of Sorbicillinoids Produced by Trichoderma longibrachiatum. Journal of fungi (Basel, Switzerland), 7(6), 428. https://doi.org/10.3390/jof7060428

Nguyen, Q. T.; Ueda, K.; Kihara, J. & Ueno, M. (2016). Culture filtrates of Trichoderma isolate H921 inhibit Magnaporthe oryzae spore germination and blast lesion formation in rice. Advance in Microbiology, 6(7), 521 – 527. https://doi.org/10.4236/aim.2016.67052

Nurbailis; Djamaan, A.; Rahma, H. & Liswarni, J. (2019). Potential of culture filtrate from Trichoderma spp. as biofungicide to Colletotrichum gloeosporioides causing anthracnose disease in chili. Biodiversitas Journal of Biological Diversity, 20(10), 2085 – 4722. https://doi.org/10.13057/biodiv/d201020

Peláez – Álvarez, A.; de los Santos – Villalobos, S.; Yépez, E. A.; Parra – Cota, F. I. & Reyes – Rodríguez, R. T. (2016). Synergistic effect of Trichoderma asperelleum T8A and captan 50 ® against Colletotrichum gloeosporioides (Penz.). Revista mexicana de ciencias agrícolas, 7(6), 1401 – 1412. Consultado el 01 de octubre de 2022. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342016000601401&lng=es&tlng=en.

Pereira, G.; Roa, N.; Castillo-Novales, D.; Arriagada, C.; Herrera, H.; Molina – Montenegro, M. & Atala, C. (2021). Mycorrhizal fungi isolated from Chilean orchids as biocontrollers of the pathogen Rhizoctonia solani. Gayana Botanica, 78(2), 113 – 120. Obtenido de https://gayanabotanica.cl/index.php/gb/article/view/399

PortalFrutícola,com (2022). Agronometrics en Gráficos: Perú impulsa el ingreso de mangos a nuevos mercados. PortalFrutícola,com. Consultado el 02 de setiembre del 2022. https://www.portalfruticola.com/noticias/2022/06/14/agronometrics-en-graficos-peru-impulsa-el-ingreso-de-mangos-a-nuevos-mercados/

Qiao, M.; Du, X.; Zhang, Z.; Xu, J. & Yu, Z. (2018). Three new species of soil – inhabiting Trichoderma from southwest China. MycoKeys, (44), 63 – 80. https://doi.org/10.3897/mycokeys.44.30295

Rahman, M. A.; Rahman, M. M.; Azad, A. K. & Alam, M. F. (2011). Inhibitory effect of different plant extracts and antifungal metabolites of Trichoderma strains on the conidial germination and germ tube growth of Colletotrichum capsici causing chili anthracnose. International Journal of Agronomy and Agricultural Research, 1(1), 20 – 28.

Ramírez – Vigil, E.; Peña – Uribe, C. A.; Macías – Rodríguez; L. I.; Reyes de la Cruz; H. & Chávez – Avilés, M. N. (2020). In vitro growth of Colletotrichum gloeosporioides is affected by butyl acetate, a compound produced during the co-culture of Trichoderma sp. and Bacillus subtilis. 3 Biotech, 10, 329. https://doi.org/10.1007/s13205-020-02324-z

Rifai, A. (1969). A revision of the genus Trichoderma. Mycological Papers, 116, 1 – 56.

Rodríguez, M. H.; Evans, H. C.; de Abreu, L. M.; de Macedo, D. M.; Ndacnou, M. K.; Bekele, K. B. & Barreto, R. W. (2021). New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Scientific reports, 11(1), 5671. https://doi.org/10.1038/s41598-021-84111-1

Ruangwong, O. U.; Pornsuriya, C.; Pitija, K. & Sunpapao, A. (2021). Biocontrol Mechanisms of Trichoderma koningiopsis PSU3-2 against Postharvest Anthracnose of Chili Pepper. Journal of fungi (Basel, Switzerland), 7(4), 276. https://doi.org/10.3390/jof7040276

Saber, W. I. A.; Khalid, M; Ghoneem, Y. M. R. & Abdulaziz, A. Al-Askar (2017) Trichoderma Harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol Science and Technology, 27(5), 654 – 676. https://doi.org/10.1080/09583157.2017.1321733

Salwan, R.; Rialch, N. & Sharma, V. (2019). Bioactive Volatile Metabolites of Trichoderma: An overview. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 87 – 111. https://doi.org/10.1007/978-981-13-5862-3_5

Samuels, G. J.; Ismaiel, A.; Mulaw, T. B.; Szakacs, G.; Druzhinina, I. S.; Kubicek, C. P. & Jaklitsch, W. M. (2012). The Longibrachiatum Clade of Trichoderma: a revision with new species. Fungal Diversity, 55, 77 – 108. https://doi.org/10.1007/s13225-012-0152-2

Savín – Molina, J.; Hernández – Montiel, L. G.; Ceiro – Catasú, W.; Ávila – Quezada, G. D.; Palacios – Espinosa, A.; Ruiz – Espinoza, F. H. & Romero – Bastidas, M. (2021). Morphological characterization and biocontrol potential of Trichoderma species isolated from semi – arid soils. Revista mexicana de fitopatología, 39(3), 435 – 451. https://doi.org/10.18781/r.mex.fit.2106-7

Servicio Nacional de Sanidad Agraria (2022). MIDAGRI: Perú exportó más de 240 mil toneladas de mango durante campaña 2021-2022. Servicio Nacional de Sanidad Agraria del Perú. Consultado el 25 de agosto del 2022. https://www.gob.pe/institucion/senasa/noticias/604850-midagri-peru-exporto-mas-de-240-mil-toneladas-de-mango-durante-campana-2021-2022.

Sivakumar, D.; Tuna Gunes, N. & Romanazzi, G. (2021). A Comprehensive Review on the Impact of Edible Coatings, Essential Oils, and Their Nano Formulations on Postharvest Decay Anthracnose of Avocados, Mangoes, and Papayas. Frontiers in microbiology, 12, 711092. https://doi.org/10.3389/fmicb.2021.711092

Stracquadanio, C.; Quiles, J. M.; Meca, G. & Cacciola, S. O. (2020). Antifungal Activity of Bioactive Metabolites Produced by Trichoderma asperellum and Trichoderma atroviride in Liquid Medium. Journal of fungi (Basel, Switzerland), 6(4), 263. https://doi.org/10.3390/jof6040263

Sutton, B. C. (1980). The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute.

Tamandegani, P. R.; Marik, T.; Zafari, D.; Balázs, D.; Vágvölgyi, C.; Szekeres, A. & Kredics, L. (2020). Changes in Peptaibol Production of Trichoderma Species during In Vitro Antagonistic Interactions with Fungal Plant Pathogens. Biomolecules, 10(5), 730. https://doi.org/10.3390/biom10050730

Tovar – Pedraza, J. M.; Mora – Aguilera, J. A.; Nava - Díaz, C.; Lima, N. B.; Michereff, S. J., Sandoval – Islas, J. S.; Câmara, M.; Téliz – Ortiz, D. & Leyva – Mir, S. G. (2020). Distribution and Pathogenicity of Colletotrichum Species Associated With Mango Anthracnose in Mexico. Plant disease, 104(1), 137 – 146. https://doi.org/10.1094/PDIS-01-19-0178-RE

Valenzuela – Ortiz, G.; Gaxiola – Camacho, S. M.; San – Martín – Hernández, C.; Martínez – Téllez, M. Á.; Aispuro – Hernández, E.; Lizardi – Mendoza, J. & Quintana – Obregón, E. A. (2022). Chitosan Sensitivity of Fungi Isolated from Mango (Mangifera indica L.) with Anthracnose. Molecules (Basel, Switzerland), 27(4), 1244. https://doi.org/10.3390/molecules27041244

Vos, C. M.; De Cremer, K.; Cammue, B. P. & De Coninck, B. (2015). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Molecular plant pathology, 16(4), 400 – 412. https://doi.org/10.1111/mpp.12189

Yu, Z.; Jiang, X.; Zheng, H.; Zhang, H.& Qiao, M. (2022). Fourteen New Species of Foliar Colletotrichum Associated with the Invasive Plant Ageratinaadenophora and Surrounding Crops. Journal of fungi (Basel, Switzerland), 8(2), 185. https://doi.org/10.3390/jof8020185

Yuan, H.; Yuan, M.; Shi, B.; Wang, Z.; Huang, T.; Qin, G.; Hou, H.; Wang, L. & Tu, H. (2022). Biocontrol activity and action mechanism of Paenibacillus polymyxa strain Nl4 against pear Valsa canker caused by Valsa pyri. Frontiers in microbiology, 13, 950742. https://doi.org/10.3389/fmicb.2022.950742

Zapata – Narváez, Y. A.; Izquierdo - García, L. F.; Botina – Azaín, B. L. & Beltrán – Acosta, C. R. (2021). Efficacy of microbial antagonists and chitin in the control of Colletotrichum gloeosporioides in postharvest of mango cv. Azúcar. Revista mexicana de fitopatología, 39(2), 248 – 265. https://doi.org/10.18781/r.mex.fit.2102-1

Zhang, J. L.; Tang, W. L.; Huang, Q. R.; Li, Y. Z.; Wei, M. L.; Jiang, L. L.; Liu, C.; Yu, X., Zhu, H. W.; Chen, G. Z. & Zhang, X. X. (2021). Trichoderma: A Treasure House of Structurally Diverse Secondary Metabolites With Medicinal Importance. Frontiers in microbiology, 12, 723828. https://doi.org/10.3389/fmicb.2021.723828

Zheng, H.; Qiao, M.; Lv, Y.; Du, X.; Zhang, K. Q. & Yu, Z. (2021). New Species of Trichoderma Isolated as Endophytes and Saprobes from Southwest China. Journal of fungi (Basel, Switzerland), 7(6), 467. https://doi.org/10.3390/jof7060467

Zhu, Z. – X.; Xu, H. – X.; Zhuang, W – Y. & Li, Y. (2017) Two new green – spored species of Trichoderma (Sordariomycetes, Ascomycota) and their phylogenetic positions. MycoKeys, 26, 61 – 75. https://doi.org/10.3897/mycokeys.26.14919