Eficacia del carbón activado de leña de Vitis vinífera en el tratamiento de agua residual domestica de Cachiche, Ica
Contenido principal del artículo
Resumen
El propósito del estudio fue evaluar la eficacia del carbón activado (CA) de leña de Vitis vinífera en el tratamiento de aguas residuales doméstica de Cachiche, Ica, evaluando el tiempo de contacto y la regeneración de CA en el porcentaje de remoción y la capacidad de adsorción de DQO, DBO5, coliformes totales, coliformes termotolerantes y E. Coli; para ello se aplicó el diseño experimental factorial. A 90 minutos de tiempo de contacto y CA sin regeneración revelaron mayores porcentajes de remoción y capacidad de adsorción de DBO5: 39,77 %, 9,86 mg/g; coliformes totales: 58,50 %, 5,13×107 NMP/g; coliformes termotolerantes: 45,5 %, 2,00×107 NMP/g y E. coli: 71,5 %, 9,84×106 NMP/g; mientras que los mayores valores para DQO fueron 37,86 % y 17,5 mg/g, obtenidos con CA regenerada una vez y a 90 minutos. El efecto del tiempo de contacto fue significativo (p < 0,05) en la capacidad adsorción de coliformes totales, pero para el resto de los parámetros no fue significativo; por otro lado, la regeneración del CA tuvo efecto significativo en la capacidad de adsorción de DBO5, DQO, coliformes termotolerantes, coliformes totales y E. Coli. En conclusión, el CA de leña de Vitis vinífera es un adsorbente eficaz y prometedor para mejorar la calidad del agua.
Descargas
Detalles del artículo
Citas
Abbas, M., Al-Ani, M., & Al-Khalidi, S. (2016). Adsorption of Coliform Bacteria from water by Activated Carbon. Engineering and Technology Journal, 34(9), 1782–1788. https://etj.uotechnology.edu.iq/article_116082_da25aae59320d38c898eb597b6f724e4.pdf
Alau, K., Gimba Casimir, E., Agbaji Bolanle, E., Abechi Eyije, S., Hajara, O., Emeka, N., & Yilleng Moes, T. (2015). Regeneration and Reuse of Neem Husk Activated Carbon in Hospital Wastewater Treatment. The International Journal of Science & Technoledge 3(10), 154–157.
Altmann, J., Ruhl, A. S., Zietzschmann, F., & Jekel, M. (2014). Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Research, 55, 185–193. https://doi.org/10.1016/j.watres.2014.02.025
Azmi, N. B., Bashir, M. J. K., Sethupathi, S., Wei, L. J., & Aun, N. C. (2015). Stabilized landfill leachate treatment by sugarcane bagasse derived activated carbon for removal of color, COD and NH3-N - Optimization of preparation conditions by RSM. Journal of Environmental Chemical Engineering, 3(2), 1287–1294. https://doi.org/10.1016/j.jece.2014.12.002
Balogun, S., & Ogwueleka, T. C. (2021). Coliforms removal efficiency of Wupa wastewater treatment plant, Abuja, Nigeria. Energy Nexus, 4, 100024. https://doi.org/10.1016/j.nexus.2021.100024
Bwatanglang, I. B., Magili, S. T., Mohammad, F., Al-Lohedan, H. A., & Soleiman, A. A. (2023). Biomass-Based Silica/Calcium Carbonate Nanocomposites for the Adsorptive Removal of Escherichia coli from Aqueous Suspensions. Separations, 10(3). https://doi.org/10.3390/separations10030212
Chavez, J. A., & Rojas, L. S. (2020). Disminución de huevos de helmintos en aguas residuales domésticas mediante el carbón activado de uva (Vitis vinifera), Puente Piedra-2020. [Tesis de pregrado en Ingenieria Ambiental, Universidad César Vallejo].
De Gisi, S., Casella, P., & Notarnicola, M. (2017). Grey Water. In Encyclopedia of Sustainable Technologies, 4. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10162-9
Environment and Natural Resources Department. (2022). Wastewater as Resources: May 2022. In European Investment Bank.
Gkika, D. A., Mitropoulos, A. C., & Kyzas, G. Z. (2022). Why reuse spent adsorbents ? The latest challenges and limitations. Science of the Total Environment, 822, 153612. https://doi.org/10.1016/j.scitotenv.2022.153612
Góngora, R. C., & Llanos, C. L. (2020). Eficiencia del filtro de carbón activado de mauritia flexuosa, en el tratamiento de agua cruda del caserío Medellín, Moyobamba, 2020 [Tesis de pregrado en Ingenieria Ambiental, Universidad César Vallejo]. https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/73006/Gongora_RRC-Llanos_CCL-SD.pdf?sequence=1&isAllowed=y
Guan, P., Prasher, S. O., Afzal, M. T., George, S., Ronholm, J., Dhiman, J., & Patel, R. M. (2020). Removal of Escherichia coli from lake water in a biochar-amended biosand filtering system. Ecological Engineering, 150, 105819. https://doi.org/10.1016/j.ecoleng.2020.105819
Jagadeesh, N., & Sundaram, B. (2023). Adsorption of Pollutants from Wastewater by Biochar: A Review. Journal of Hazardous Materials Advances, 9, 100226. https://doi.org/10.1016/j.hazadv.2022.100226
Koul, B., Yadav, D., Singh, S., Kumar, M., & Song, M. (2022). Insights into the Domestic Wastewater Treatment (DWWT) Regimes: A Review. Water (Switzerland), 14(21). https://doi.org/10.3390/w14213542
Kow, S. H., Fahmi, M. R., Abidin, C. Z. A., Ong, S. A., & Ibrahim, N. (2016). Regeneration of spent activated carbon from industrial application by NaOH solution and hot water. Desalination and Water Treatment, 57(60), 29137–29142. https://doi.org/10.1080/19443994.2016.1168133
Li, L., Zou, D., Xiao, Z., Zeng, X., Zhang, L., Jiang, L., Wang, A., Ge, D., Zhang, G., & Liu, F. (2019). Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. Journal of Cleaner Production, 210, 1324–1342. https://doi.org/10.1016/j.jclepro.2018.11.087
Mayta-Armas, A., Canchanya-Huaman, Y., Ramos-guivar, J. A., Pomalaya-Velasco, J., Bendezú-Roca, Y., & Checca-Huaman, N. (2023). Enhanced Removal of As ( V ) and Pb ( II ) from Drinking and Irrigating Water Effluents Using Hydrothermally Synthesized. Water. https://doi.org/10.3390/w15101892
Murcia-salvador, A., Pellicer, J. A., Rodríguez-López, M., Gómez-López, V., Núñez-Delicado, E., & Gabaldon, J. (2020). Egg By-Products as a Tool to Remove Direct Blue Desorption Properties. Materials, 13. https://doi.org/10.3390/ma13061262
Nayl, A. E. A., Elkhashab, R. A., Malah, T. El, Yakout, S. M., El-Khateeb, M. A., Ali, M. M. S., & Ali, H. M. (2017). Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste. Environ Sci Pollut Res, 24(1), 22284–22293. 10.1007/s11356-017-9878-4
Oladejo, J., Shi, K., Chen, Y., Luo, X., Gang, Y., & Wu, T. (2020). Closing the active carbon cycle: Regeneration of spent activated carbon from a wastewater treatment facility for resource optimization. Chemical Engineering and Processing - Process Intensification, 150, 107878. https://doi.org/10.1016/j.cep.2020.107878
Pal, S., Joardar, J., & Myong, Song, J. (2006). Removal of E. coli from Water Using Surface-Modified Activated Carbon Filter Media and Its Performance over an Extended Use. Nviron. Sci. Technol., 40(19), 6091–6097. https://doi.org/https://doi.org/10.1021/es060708z
Patel, P., Muteen, A., & Mondal, P. (2019). Treatment of greywater using waste biomass derived activated carbons and integrated sand column. Science of the Total Environment, 134586. https://doi.org/10.1016/j.scitotenv.2019.134586
Pongener, C., Bhomick, P., Upasana Bora, S., Goswamee, R. L., Supong, A., & Sinha, D. (2017). Sand-supported bio-adsorbent column of activated carbon for removal of coliform bacteria and Escherichia coli from water. International Journal of Environmental Science and Technology, 14(9), 1897–1904. https://doi.org/10.1007/s13762-017-1274-6
Ravasi, D., König, R., Principi, P., Perale, G., & Demarta, A. (2019). Effect of Powdered Activated Carbon as Advanced Step in Wastewater Treatments on Antibiotic Resistant Microorganisms. Current Pharmaceutical Biotechnology, 20(1), 63–75. https://doi.org/10.2174/1389201020666190207095556
Ruiz, L., & Orbegoso, K. Y. (2019). Eficiencia del carbón activado obtenido a partir del endocarpo de “coco” (Cocos nucifera) y semilla de “aguaje” (Mauritia flexuosa), en la remoción de la DBO5 de las aguas residuales domésticas en el distrito de Habana – Moyobamba, 2018 [Tesis de pregrado en Ingenierio Sanitariol, Universidad Nacional de San Martin Tarapoto]. https://repositorio.unsm.edu.pe/handle/11458/3345
Sashikesh, G., Anushkkaran, P., Praveena, Y., Arumukham, M., Kugamoorthy, V., & Kandasamy, V. (2023). A comparison study of the ef fi cacy of different activated charcoals derived from Palmyra kernel shell in removing phenolic compounds. Current Research in Green and Sustainable Chemistry, 6, 100355. https://doi.org/10.1016/j.crgsc.2023.100355
Sia, Y. Y., Tan, I. A. W., & Abdullah, M. O. (2016). Adsorption of colour, TSS and COD from palm oil mill effluent (POME) using acid-washed coconut shell activated carbon: Kinetic and mechanism studies. MATEC Web of Conferences, 87. https://doi.org/10.1051/matecconf/20178703010
Silupú, C. R., Solís, R. L., Cruz, G. J. F., Gómez, M. M., Solís, J., & Keiski, R. (2017). Caracterización de filtros comerciales para agua a base de carbón activado para el tratamiento de agua del río Tumbes - Perú. Revista Colombiana de Química, 46(3), 37–45. http://www.scielo.org.co/scielo.php?pid=S0120-28042017000300037&script=sci_arttext
Wang, W., Du, Z., Deng, S., Vakili, M., Ren, L., Meng, P., Maimaiti, A., Wang, B., Huang, J., Wang, Y., & Yu, G. (2018). Regeneration of PFOS loaded activated carbon by hot water and subsequent aeration enrichment of PFOS from eluent. Carbon, 134, 199–206. https://doi.org/10.1016/j.carbon.2018.04.005
Worch, E. (2010). Competitive adsorption of micropollutants and NOM onto activated carbon: Comparison of different model approaches. Journal of Water Supply: Research and Technology - AQUA, 59(5), 285–297. https://doi.org/10.2166/aqua.2010.065
Zela, J., & Olivas, G. (2022). Diagnóstico de las plantas de tratamiento de aguas residuales (PTAR) en el ámbito de las empresas prestadoras. SUNASS.