Biodegradation of cyanide contained in the leachate of a gold ore

Main Article Content

Daladier Castillo Cotrina
Milena Carpio Mamani

Abstract

The biodegradation of cyanide compounds that occur in effluents from mineral leaching plants for the recovery of gold is a current biological treatment that is allowing ecosystems to not continue to be contaminated with cyanide discharges, and also the environments that are already contaminated are recovered with the application of cyanide-degrading microorganisms. The objective of this work was to evaluate native Pseudomonas fluorescens as a degrader of cyanide present in leachates under laboratory conditions, for which it was isolated from a gold ore leachate and inoculated in three aerated bioreactors with cyanide leachate of gold ore that had 250 ppm of free cyanide, and an inoculum of 1.75x108 cells/ml in a first bioreactor, 8.75x107 cells/ml in a second, and 5.4x106 cells/ml in a third bioreactor, which were incubated at room temperature for 168 hours. The evaluation of the free cyanide contained in the bioreactors, every 24 hours by means of the titrimetric method, allowed establishing that P. fluorescens with 1.75x108 cells/ml degraded 246.25 ppm (98.5%) of the total free cyanide; with 8.75x107 cells/ml, 240 ppm (96%); and with 5.47x106 cells/ml, 237.5 ppm (95%). These results show that P. fluorescens has great potential for further study with the purpose of using it in the bioremediation of ecosystems contaminated with cyanide leachate or for the treatment of cyanide effluents.

Downloads

Download data is not yet available.

Article Details

How to Cite
Castillo Cotrina, D. ., & Carpio Mamani, M. (2022). Biodegradation of cyanide contained in the leachate of a gold ore. Revista Ciencias Biológicas Y Ambientales, 1(1). https://doi.org/10.33326/29585309.2022.1.1596
Section
Artículos

References

Agudelo, R.M., Betancur U., J., & Jaramillo C., Carmen L. (2010). Biotratamiento de residuos cianurados y su relación con la salud pública. Rev. Fac. Nac. Salud Pública, 28 (1): 7-20.

Akcil, A. (2003a). Destruction of cyanide in gold mill effluents: Biological versus chemical treatments. Biotechnology Advances, 21(6), 501–511. https://doi.org/10.1016/S0734-9750(03)00099-5

Akcil, A. (2003b). Destruction of cyanide in gold mill effluents: Biological versus chemical treatments. Biotechnology Advances, 21(6), 501–511. https://doi.org/10.1016/S0734-9750(03)00099-5

Avcioglu, N. H., & Seyis Bilkay, I. (2016). Biological treatment of cyanide by using Klebsiella pneumoniae species. Food Technology and Biotechnology, 54(4), 450–454. https://doi.org/10.17113/ft b.54.04.16.4518

Calizaya, J., & Castillo, D. (2020). Aislamiento y capacidad degradadora de cianuro de Klebsiella sp. de la planta de tratamiento de aguas residuales de Magollo, Tacna-Perú. Ciencias, 4.

Capatinta, F., & Cárdenas, A. (2020). Análisis de los métodos de degradación de cianuro en los relaves generados por las mineras auríferas (tesis). Universidad Católica San Pablo. Arequipa. Perú.

Copari, A., Carpio, M., & Cáceda, C. (2020). Optimización de factores físico químicos en la biodegradación de cianuro por Klebsiella sp. ART1, en biorreactor aireado. Revista Ciencia & Desarrollo (19), 26 (1) 20 – 31.

Correa A., Boanerges R., & Mocha A., Joseph M. (2021). Tratamiento de aguas residuales mediante biodiscos en la planta de beneficio reina del cisne, El Pache-Portovelo-El oro (tesis). Universidad Politécnica Salesiana. Cuenca-Ecuador.

Kita, Y., Nishikawa, H., & Takemoto, T. (2006). Effects of cyanide and dissolved oxygen concentration on biological Au recovery. Journal of Biotechnology, 124(3), 545–551. https://doi.org/10.1016/j.jbiotec.2006.01.038

Kuyucak, N., & Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering, 50–51, 13–29. https://doi.org/10.1016/j.mineng.2013.05.027

Martínez, M., Ferro, E., & De Pablos, F. (2016). Evaluation of free cyanide in superficial waters of river Paraguay nearby a Steel industry. Revista Boliviana de Química, 33 (2), 88-94.

Mudder, T., & Botz, M. (2004). Cyanide and society: a critical review. European Journal of Mineral Processing and Environmental Protection, 4(1), 62–74. https://doi.org/1303-0868

Murillo, A., & Montañez, M. (2022). Capacidad fitoremediadora del Schoenoplectus americanus y Eichhornia crassipes sobre la concentración de cianuro en el efluente de la mina Paltarumi S.A.C. Barranca, 2020 (tesis). Universidad Católica Sede Sapientiae. Barranca. Perú.

Razanamahandry, L. C., Andrianisa, H. A., Karoui, H., Podgorski, J., & Yacouba, H. (2018). Prediction model for cyanide soil pollution in artisanal gold mining area by using logistic regression. Catena, 162, 40–50. https://doi.org/10.1016/j.catena.2017.11.018

Saavedra, J. (2018). Degradación del cianuro de sodio por bacterias aisladas de efluentes cianurados de la zona minera artesanal, Huamachuco- La Libertad (tesis). Universidad Nacional de Trujillo. Trujillo. Perú.

Shin, D., Jeong, J., Lee, S., Pandey, B. D., & Lee, J. C. (2013). Evaluation of bioleaching factors on gold recovery from ore by cyanide-producing bacteria. Minerals Engineering, 48, 20–24. https://doi.org/10.1016/j.mineng.2013.03.019

Xiong, Y., Gao, Y., Yin, W. ying, & Luan, Y. xia. (2008). Molecular phylogeny of Collembola inferred from ribosomal RNA genes. Molecular Phylogenetics and Evolution, 49(3), 728–735. https://doi.org/10.1016/j.ympev.2008.09.007

Restrepo, O., Montoya, C., & Muñoz, N. (2006). Degradación microbiana de cianuro procedente de plantas de beneficio de oro mediante una cepa nativa de P. fluorescens. Dyna, 73(149), 46-51. https://www.redalyc.org/pdf/496/49614905.pdf

Soto, K. (2021). Estudio sobre la capacidad de biorremediación de bacterias Pseudomonas (tesis). Universidad Estatal Península de Santa Ana. La Libertad. Ecuador.

Most read articles by the same author(s)