Influence of Arsenopyrite pulp density on the kinetics of leaching microbial biomass

Main Article Content

Daladier Castillo Cotrina
Roberto Castellanos Cabrera
Anacelly Valera López
Jhonny Paredes Escobar
Jose Sandoval Niebles
Karen Villanueva Centeno

Abstract

The bioleaching of minerals for the recovery of metals is a technology with great application, profitability, low cost and friendly to ecosystems. In this process, the leaching microorganisms that are catalysts of the process are influenced by biological, physical, and chemical factors typical of their environment. One of these factors is the pulp density of the ore to be leached; Therefore, in this work, the objective was to determine the influence of the arsenopyrite pulp density on the maximum biomass, maximum biomass productivity and specific growth rate of A. ferrooxidans alone and in consortium with A. thiooxidans. The experimental treatments considered in duplicate were discontinuous liquid cultures, one with A. ferrooxidans and the other with A. ferrooxidans and A. thiooxidans, both in 9K medium with arsenopyrite at 8 and 10%, all incubated at 26 °C with aeration for 288 hours. Cell counts were made in a Neubauer chamber, taking samples every 48 hours from each culture. The data was processed in the Excel program that allowed obtaining the curves and polynomial equations of the biomass production; likewise the values of the kinetic parameters of the microbial growth curve in which the maximum biomass and productivity in the pure culture was inversely proportional to the pulp density, but directly proportional for the consortium; and that the growth rate in the pure culture was directly proportional to the pulp density but inversely proportional for the consortium.

Downloads

Download data is not yet available.

Article Details

How to Cite
Castillo Cotrina, D. ., Castellanos Cabrera, R. ., Valera López, A. ., Paredes Escobar, J. ., Sandoval Niebles, J. ., & Villanueva Centeno, K. . (2022). Influence of Arsenopyrite pulp density on the kinetics of leaching microbial biomass. Revista Ciencias Biológicas Y Ambientales, 1(1), 62–73. https://doi.org/10.33326/29585309.2022.1.1591
Section
Artículos

References

Akcil, A., Ciftci, H., & Deveci, H. (2007). Role and contribution of pure and mixed cultures of mesophiles in

bioleaching of a pyritic chalcopyrite concentrate. Minerals Engineering. 20, 310-318.

Aston, E., Peyton, M., Lee, B., & Apel, A. (2010). Effects of ferrous sulfate, inoculum history, and anionic

form on lead, zinc, and copper toxicity to Acidithiobacillus caldus strain BC13. Environmental Toxicology

and Chemistry, 29 (12), 2669-2675.

Baloch, M. A., Baloch, N., Bhatti, T. M., Faheem, M., Behlil, F. & Ali, I. (2017). Bioleaching of copper from copper sulfide minerals of reko diq deposits in Chagai, Balochistan. Indo American Journal of Pharmaceutical Sciences, 04(10), 3849–3854. https://doi.org/10.5281/zenodo.1027995

Braddock, J.F., Luong, H.V., & Brown, E.J. (1984). Growth kinetics of Thiobacillus ferrooxidans isolated from

arsenic mine drainage. Appl Environ Microbiol. 48(1), 48–55.

Brookes, P.C. (1995). Use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil.

Soils 19, 269-279.

Brookes, P. C., & McGrath, S. P. (1984). Effects of metal toxicity on the size of the soil microbial biomass. J.

Soil Sci. 35, 341-346.

Brookes, P.C., McGrath, S.P., & Heijnen, C. (1986). Metal residues in soils previously treated with sewage

sludge and their effects on growth and nitrogen fixation by bluegreen algae. Soil Biol. Biochem. 18,

-353

Castillo, D., Clavijo, D., Chipana, V., Centeno, J., Eyzaguirre, P., Delgado, S., & De la Vega, L. (2016). Evolución del crecimiento en consorcios microbianos nativos en la mina de Toquepala de Tacna-Perú. XIII Jornadas Mineras de tratamiento de minerales. Mendoza. Argentina.

Castillo, D., Castellanos, R., & Tirado, E. (2021). Acción bioxidativa de cultivos microbianos biolixiviantes

sobre la arsenopirita. Ciencia & Desarrollo, (20), 57-69.

Chambi, A.D., & Torres, A.M. (2021). Modelos cinéticos sigmoidales aplicados al crecimiento de Saccharomyces boulardii. Revista de investigaciones altoandinas, 23 (1), 47-54.

Collinet, M., & Morin, D. (2003). Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to

arsenite, arsenate, ferrous and ferric iron. Rev.Orstom Lab. De Microbiologie, 4(4),456-65.

Colorado, S. (2018). Determinación de parámetros cinéticos de Synechococcus sp. pcc 7002 en cultivo sumergido (tesis de pregrado). Universidad EAFIT. Medellín. Colombia.

Corkhill, C.L., & Vaughan, D.J. (2009). Arsenopyrite oxidation. Applied Geochemistry, 24 (2342-2361).

Delgado, S., & Castillo, D. (2019). Influencia de la temperatura en el crecimiento de un consorcio microbiano y su capacidad bioxidativa sobre el hierro de la calcopirita. Ecología aplicada, 18 (1).

Deng, Y., Zhang, D., Xia, J., Nie, Z., Liu, H., Wang, N., & Xue, Z. (2020). Enhancement of arsenopyrite bioleaching by different Fe (III) compounds through changing composition and structure of passivation

layer. Journal of Materials Research and Technology, 9(6).

Gentina, J., & Acevedo, F. (2005). Biolixiviación de minerales de oro. In: Fernando Acevedo y Juan Carlos

Gentina (eds.). Fundamentos y perspectivas de las tecnologías biomineras. 79-91.

Gómez, A. (2017). Influencia del medio de cultivo sobre el crecimiento microbiano y perfil de actividad

enzimática de dos Geobacillus aislados del volcán “El Chichón” (tesis de pregrado). Instituto Tecnológico

de Tuxtla Gutiérrez. México.

Kim, T., Kim, C., Chang, Y., Ryuand, H., & Cho, K. (2002). Development of an optimal medium for continuos

ferrous iron oxidation by inmobilized Acidothiobacillus ferrooxidans cells. Biotechnology Progress. 18,

-759.

Leita, L., De Nobili, M., Muhlbalchova, G., Mondini, C., Marchiol, L., & Zerbi, G. (1995). Bioavailability and

effects of heavy metal son soil microbial biomass survival during Laboratory incubation. Biol fertil Soils

, 103-108.

Liu, H., Gu, G., & Xu,Y. (2011). Surface properties of pyrite in the course of bioleaching by pure culture

of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus

thiooxidans. Hydrometallurgy 108, 143 - 148.

McGrath, S.P., Brookes, P.C, & Giller, K.E. (1988). Effects of potentially toxic metals in soils derived from past applications of sewage sludge on nitrogen fixation by Trifolium repens L. Soil Biol. Biochem. 20, 415-

Mejía, E., Ospina, J.D., Osorno, B.L., Marquez, L.A., & Morales, A.L. (2011). Adaptación de una cepa compatible con Acidithiobacillus ferrooxidans sobre concentrados de calcopirita (CuFeS2), esfalerita (ZnS) y galena (PbS). Grupo de Investigación. Universidad Nacional de Colombia. Medellín.

Natarajan, K. (2003). Surface chemical studies on “Acidithiobacillus” group of bacteria with reference to

mineral flocculation. International Journal of Mineral processing 72 (1-4), 189-198.

Ndlovus, S., & Monhemius, A.J. (2005). The influence of crystal orientation on the bacterial dissolution of

pyrite. Hydrometallurgy 78(3-4), 187-197.

Pavez, B. (2011). Cuantificación de la expresión del gen omp-40 y de los genes que conforman el operón gal, vinculado a cambios cinéticos de Acidithiobacillus ferrooxidans en respuesta adaptativa a mineral sulfurado de cobre (tesis para optar el título de Bioquímico).

Pirt, S.J. (1975). Principles of Microbe and Cell Cultivation. Blackwell Scientific Publication, Oxford.

https://doi.org/10.1002/aic.690220342

Rohr, M., Lavalle, L., Pettinari, G., Giaveno, A., & Donati, E. (2005). Lixiviación de un mineral sulfurado

utilizando cepas acidófilas nativas. Universidad Nacional del Comague. Universidad Nacional de La

Plata. Argentina.

Renella, G., Brookes, P.C., & Nannipieri, P. (2002). Cadmium and Zinc toxicity to soil microbial biomass and

activity. Developments in Soil science, 28(2), 267-273 https://doi.org/10.1016/S0166-2481(02)80024-1

Vanegas, D.M., & Ramírez, M.E. (2016). Correlación del crecimiento de Pseudomonas fluorescens en la

producción de polihidroxialcanoatos de cadena media (PHAPCM) mediante modelos primarios de Gompertz, Logístico y Baranyi. Información tecnológica, 27 (2), 87-96.

Watling, H.R. (2015). Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources.

Minerals 5(1), 1-60. https://doi.org/10.3390/min5010001

Watkin, E.L.J., Keeling, S.E., Perrot, F. A., Shiers, D.W., Palmer, M.L., & Watling, H. R. (2009). Metals tolerance in moderately thermophilic isolates from a spent copper sulWde heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans. J. Ind. Microbiol Biotechnol., 36 (3), 461–465. https://doi.org/10.1007/s10295-008-0508-5

Zárate E. (2015). Determinación de los parámetros cinéticos del crecimiento de Thiobacillus thioxidans en

sustrato hidrófobo de azufre. http://hdl.handle.net/20.500.12952/1107