Análisis de portafolios de inversión mediante simulación de Monte Carlo en Python: Evaluación del riesgo y rendimiento con acciones mexicanas
Contenido principal del artículo
Resumen
Este estudio utiliza la simulación de Monte Carlo para analizar portafolios de inversión, evaluando el riesgo y rendimiento de diez acciones mexicanas seleccionadas de diversas industrias. Generando 1000 combinaciones aleatorias de ponderaciones. La simulación mostró una amplia gama de escenarios de desempeño para las carteras. Los resultados destacaron la importancia del índice de Sharpe para identificar portafolios óptimos, revelando que mayores rendimientos suelen implicar mayor volatilidad, mientras que las carteras estables ofrecen un mejor balance riesgo-retorno. La frontera eficiente visualizó esta relación. Este análisis demuestra el valor de la simulación Monte Carlo para optimizar asignaciones de activos y apoyar decisiones informadas.
##plugins.themes.bootstrap3.displayStats.downloads##
Detalles del artículo
Sección

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Todos los documentos -salvo que se indique lo contrario- se publican bajo Licencia de Creative Commons Atribución 4.0 Internacional
Los autores conservan los derechos de autor y ceden a la revista el derecho de primera publicación, con el trabajo registrado con la Licencia de Creative Commons. Usted puede:
a. Compartir, copiar y redistribuir el material en cualquier medio o formato.
b. Adaptar, remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente.
La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguiente términos:
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.
Cómo citar
Referencias
Anderson, J. A., Glaser, J., & Glotzer, S. C. (2020). HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Computational Materials Science, 173, 109363. https://www.sciencedirect.com/science/article/abs/pii/S0927025619306627
Agarwal, S., & Muppalaneni, N. B. (2022). Portfolio optimization in stocks using mean–variance optimization and the efficient frontier. International Journal of Information Technology, 14(6), 2917-2926. https://link.springer.com/article/10.1007/s41870-022-01052-2
Barillas, F., Kan, R., Robotti, C., & Shanken, J. (2020). Model comparison with Sharpe ratios. Journal of Financial and Quantitative Analysis, 55(6), 1840-1874. https://doi.org/10.1017/S0022109019000589
Bhutto, S. A., Ahmed, R. R., Streimikiene, D., Shaikh, S., & Streimikis, J. (2020). Portfolio Investment diversification at Global stock market: A Cointegration Analysis of Emerging BRICS (P) Group. Acta Montanistica Slovaca, 25(1). https://portalcris.vdu.lt/server/api/core/bitstreams/1a444b30-7703-47a1-bdca-935a3d9d292c/content
Bottasso, A., Fusaro, M., Giribone, P. G., & Tissone, A. (2023). Investment certificates pricing using a Quasi-Monte Carlo framework: Case-studies based on the Italian market. International Journal of Financial Engineering, 10(03), 2350021. https://doi.org/10.1142/S2424786323500214
Brunnermeier, M., Rother, S., & Schnabel, I. (2020). Asset price bubbles and systemic risk. The Review of Financial Studies, 33(9), 4272-4317. https://academic.oup.com/rfs/article-abstract/33/9/4272/5732666
Dimand, R. W. (2024). Harry Markowitz, the Cowles Commission, and portfolio theory. Annals of Operations Research, 1-13. https://link.springer.com/article/10.1007/s10479-024-06223-x
Fuhrer, C., Solem, J. E., & Verdier, O. (2021). Scientific Computing with Python: High-performance scientific computing with NumPy, SciPy, and pandas. Packt Publishing Ltd.
Hali, N. A., & Yuliati, A. (2020). Markowitz model investment portfolio optimization: a review theory. International Journal of Research in Community Services, 1(3), 14-18. https://journal.rescollacomm.com/index.php/ijrcs/article/view/104
Hu, X. (2024). Bayesian Optimization and Monte Carlo Simulation in Technology Sector Portfolio Allocation: A Comparative Analysis Using the Sharpe Ratio. Highlights in Science, Engineering and Technology, 88, 300-310. https://drpress.org/ojs/index.php/HSET/article/view/18870
Jensen, T. I., Kelly, B. T., Malamud, S., & Pedersen, L. H. (2024). Machine learning and the implementable efficient frontier. Swiss Finance Institute Research Paper, (22-63). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4187217
Jeong, D., Yoo, M., Yoo, C., & Kim, J. (2019). A hybrid Monte Carlo and finite difference method for option pricing. Computational Economics, 53, 111-124. https://link.springer.com/article/10.1007/s10614-017-9730-4
Kahramonovich, S. F. (2023). Analysis of Efficient Portfolio based on Modern Portfolio Theory. World Bulletin of Management and Law, 24, 47-51. https://www.scholarexpress.net/index.php/wbml/article/view/2998
Kourtis, A. (2016). The Sharpe ratio of estimated efficient portfolios. Finance Research Letters, 17, 72-78. https://www.sciencedirect.com/science/article/abs/pii/S1544612316000106
Lo, A. W. (2020). Robert C. Merton: The First Financial Engineer. Annual Review of Financial Economics, 12, 1-18. https://www.annualreviews.org/content/journals/10.1146/annurev-financial-042720-055018
Lubanovic, B. (2019). Introducing Python: Modern Computing in Simple Packages. O'Reilly Media, Inc.
Mistry, J., & Khatwani, R. A. (2023). Examining the superiority of the Sharpe single-index model of portfolio selection: A study of the Indian mid-cap sector. Humanities and Social Sciences Communications, 10(1), 1-9. https://www.nature.com/articles/s41599-023-01686-y
Mittal, S., Bhattacharya, S., & Mandal, S. (2022). Characteristics analysis of behavioural portfolio theory in the Markowitz portfolio theory framework. Managerial finance, 48(2), 277-288. https://www.emerald.com/insight/content/doi/10.1108/mf-05-2021-0208/full/html
Mnif, E., Jarboui, A., Hassan, M. K., & Mouakhar, K. (2020). Big data tools for Islamic financial analysis. Intelligent Systems in Accounting, Finance and Management, 27(1), 10-21. https://onlinelibrary.wiley.com/doi/abs/10.1002/isaf.1463
Mongid, A., Suhartono, S., Sistiyarini, E., & Hidayat, S. E. (2023). Historical stress test of credit risk using Monte Carlo simulation: Indonesia Islamic banking. International Journal of Business and Society, 24(2), 608-619. https://publisher.unimas.my/ojs/index.php/IJBS/article/view/5947
Moradi, M., Oskou, V., Talebi, R., & Namdar, F. (2024). Unsystematic risk, financing policy and financing behavior of companies in the TSE. New Applied Studies in Management, Economics & Accounting, 7(2), 60-71. https://www.nasme-journal.ir/article_186977.html
Moslehpour, M., Al-Fadly, A., Ehsanullah, S., Chong, K. W., Xuyen, N. T. M., & Tan, L. P. (2022). Assessing financial risk spillover and panic impact of Covid-19 on European and Vietnam stock market. Environmental Science and Pollution Research, 29(19), 28226-28240. https://link.springer.com/article/10.1007/s11356-021-18170-2
Pav, S. E. (2016). Notes on the Sharpe ratio. Semantic Scholar, 1-49. https://cran.uni-muenster.de/web/packages/SharpeR/vignettes/SharpeRatio.pdf
Pav, S. E. (2021). The Sharpe Ratio: Statistics and Applications. Chapman and Hall/CRC.
Sánchez-Serna, A., Camacho-Zabala, E. A., Rueda Varon, M. J., & Carvajal Sandoval, A. R. (2021). Impairment model applying Monte Carlo simulation: Expected loss approach for companies in the real sector. International Journal of Business & Management Science, 11(1). https://perfilesycapacidades.javeriana.edu.co/en/publications/impairment-model-applying-montecarlo-simulation-expected-loss-app
Shadabfar, M., & Cheng, L. (2020). Probabilistic approach for optimal portfolio selection using a hybrid Monte Carlo simulation and Markowitz model. Alexandria engineering journal, 59(5), 3381-3393. https://www.sciencedirect.com/science/article/pii/S1110016820302118
Sial, A. H., Rashdi, S. Y. S., & Khan, A. H. (2021). Comparative analysis of data visualization libraries Matplotlib and Seaborn in Python. International Journal of Advanced Trends in Computer Science and Engineering, 10(1), 277-281. https://doi.org/10.30534/ijatcse/2021/391012021
Thakkar, A., & Chaudhari, K. (2021). A comprehensive survey on portfolio optimization, stock price and trend prediction using particle swarm optimization. Archives of Computational Methods in Engineering, 28(4), 2133-2164. https://link.springer.com/article/10.1007/s11831-020-09448-8
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., & Van Mulbregt, P. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods, 17(3), 261-272.
Zhang, M., Tang, Y., Liu, L., & Zhou, D. (2022). Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy. Renewable and Sustainable Energy Reviews, 154, 111879. https://doi.org/10.1016/j.rser.2021.111879
Zhang, A. (2023). Portfolio Optimization of Stocks-Python-Based Stock Analysis. International Journal of Education and Humanities, 9(2), 32-38. https://doi.org/10.54097/ijeh.v9i2.9584
Zhang, H., Hua, F., Xu, C., Kong, H., Zuo, R., & Guo, J. (2023). Unveiling the potential of sentiment: can large language models predict Chinese stock price movements? arXiv preprint arXiv:2306.14222. https://arxiv.org/abs/2306.14222